Compiling Software

Hands-On UNIX System Administration
2012-02-13




Types of Software Packages

Programs — things you can run off the command line

Libraries — software that other source code can use the
functions from

Modules — “extension” code written specifically to work with a
certain program

Script libraries — code archives in languages like Python, Perl,
Ruby for various purposes




The Procedure

Step 0: Download and unpack source
Generally, using the tar application. e.g.
tar -xvzf MyProg-1.0.tar.gz
tar -xvjf MyProg-1.0.tar.bz2

Step 1: Run ./configure

Prepares source for building on your particular system

Step 2: Run make
Compiles source files to binaries (if applicable)

Step 3: Run make install

Installs programs and data into system




The Procedure (cont.)

This works in the majority (70-75%) of cases

Many other software environments (e.g. scripting languages)
have own system

For example..

Python: python setup.py install
Perl: perl Makefile.PL; make ...

* When in doubt, look for an INSTALL text file or a README




Patching Software

* When released software has issues, a code patch is released
instead of a new version

* Generally come in the unified diff format, which the “patch”
utility understands

* You should apply patches before you build, obviously - hence
mentioning this here




Example of a Patch

--- maildirtree-0.6/maildirtree.c 2008-10-07 14:19:42 -0700
+++ maildirtree-0.6/maildirtree.c.new 2008-10-07 14:19:48 -0700

@@ -103,7 +103,7 @@

{
case 'h'”:
puts(usage),
- exits(0);
+ exit(0),
case 's’:

summary = true;




Example of a Patch (cont.)

* Example: patch -p1 < fix.diff

* -p1: If fix.diff wants to look for a/b/test.c, actually modify b/
test.c

+ -p2: fix.diff looks for a/b/test.c, actually modifies ./test.c

* 99% of patches: Enter the source directory, then use -p1




Make!

* Powerful build system! You will be using the “GNU” version of
make in this class

* Lets you specify what to build, how to build (compiler and
arguments), and order to build in

* Includes strong dependency system

* “Don’t build my_program without having libprogram.a built
already”

* “If | update foo.h, rebuild foo.c”




Configuring Make

* Configure script generally has options; try ./configure --help
* You can enable features, point it to library install paths that it
needs, use different compiler, etc.

* Reacting to a configure/build error often involves trying to
find an option that will fix things.




Build Problems

Missing library:
Download, build, and install the needed library

Missing compiler:
Install your OS’s compiler distribution (e.g. Xcode or gcc package
on Linux)

Make sure to install the C development headers! (e.g. libfoo-dev)
on Debian

Compilation error:
Is your operating system supported by the author?

You could try and fix it... then submit your solution to the
author!




Dependency Hell

What if your program depends on libfoo?

Download libfoo source and try to build
libfoo depends on libbar
Download libbar source and try to build
... ad infinitum ...

Many dependencies

Chains of dependencies

Conflicting dependencies

Circular dependencies

We call this “dependency hell”




How can we (try to) solve this?

* Package systems in Linux distributions (apt, aptitude) or in
BSD-type distributions (ports) can help

> Apt-get, aptitude, dpkg




Ports in (Free-)BSD Systems

Portinstall, portupgrade
Installs, upgrades given package
Basically runs through configure, make, and make install
E.g. portinstall zsh-4.3.15 1
Portsnap
Port snapshot

Updates the ports tree
Pkg add, pkg_deinstall
Adds, uninstalls specified package
E.g. pkg_deinstall sudo-1.8.3 1
pkg_info, pkgdb
Gives info about installed packages

Manage and search database




