Process Management

forks, bombs, zombies, and daemons!

Lecture 5, Hands-On Unix System Administration DeCal
2012-10-01

what 1s a process?

O an abstraction!

O you can think of it as a program in the midst of

execution
o but also much more than just that!

Process A

©

d
Instructions
r’ 4

what 1s a process?

"living result of running program code"

processes are born, they give birth to other processes,
and also die.

kernel is responsible for their management
O resource allocation, process scheduling, etc.

O

relationships among processes

A process is always created by another process.
with the exception of init, executed directly by the

kernel during the boot process.
o 1init is the parent/grandparent of all processes,

responsible for spawning all necessary processes
upon system startup

A process can spawn multiple children

hierarchical structure

o pstree, ps auxf

exit status

children processes return a numeric status value to
their parents

exit statuses can tell the parent process if the
command succeeded or failed

Many (but not all) commands return a status of 0 if it
succeeded or non-zero if something went wrong

in bash, “echo $?' to obtain exit status of previous

command
common exit codes:

0 -- success!
1 -- a catch-all for general errors
127 -- command not found

130 -- termination by Ctrl+C

process attributes

O process information stored internally in a process table
O A process keeps its entry in the process table until it dies

(properly)
O Some process attributes include:

O PID (process-id): each process identified by a unique integer
O PPID (parent-PID): PID of the parent
O process states (see ‘man ps' for a complete list)

(R) Running: running or ready to run

(S) Interruptible: a blocked state of a process and waiting for an
event or signal from another process

(D) Uninterruptible: a blocked state; process can't be killed or
interrupted, usually

(T) Stopped: Process is stopped or halted and can be restarted
by some other process

(Z) Zombie: process terminated, but information is still there in
the process table.

O O O O

PS

"process status”
obtain information on processes currently running on the system
options vary! they differ among different distributions
read the man page!! fields are also explained there!
O in particular there are 3 sets of options in ps,
B UNIX options, preceded by a -

® ps-ef # display all processes running on the system, in full
format listing

® ps-u# display processes you are running (or specify a user)
B BSD options, no dash!

® ps aux # display all processes running on the system
B GNU long options, -- (two dashes)

why you can't kill zombies.

How do zombie processes arise? What's a zombie process?
O harmless dead child process that whose entry still exists in the

process table
O can't exactly kill them because they're already dead.

parent usually picks up its children's exit statuses

To remove these process table entries occupied by zombies, try sending a
SIGCHLD signal to the parent manually (kill -s CHLD <parent pid>)

O if a misbehaving parent doesn't pick up its dead child's exit status
B child turns into zombie.
O agood parent reaps its dead children.

orphans

o a process becomes an orphan when its parent dies
before it does

o kernel makes init the parent of all orphans
o the orphan gets adopted by init

o O O O

daemons

system-related background processes, no direct user
interaction needed

often started on system startup

often run with the permissions of root

services requests from other processes.

usually waiting for something to happen

o eg, printer daemon is waiting for print commands.
examples:

o sshd (listens for ssh connections from clients),
o cupsd (printing system daemon)

o httpd (web server daemon)

O O O O

fork bombs

fork() --create new, identical child process

form of denial of service (DoS) attack

‘explodes’ by recursively spawning copies of itself rapidly
exhausts process table entries

o can't create anymore processes

The classic example

({:]: &}

which is basically (in human readable form)
bomb() {

bomb | bomb &
}; bomb

disclaimer: I am not responsible if you crash your laptop.

preventing fork bombs

o limit resource usage.
o limiting the number of processes a user can have
o examples:

o /Jetc/security/limit.conf

o ulimit -u

process management

o cron
o kill
o job control

process signal handling

O O O O O

on your system

processes can receive signals

provides limited inter-process communication

often used to communicate occurrence of an event
represented by numeric values (system-dependent)

kill -1 to see available signals + corresponding numeric values

o commonly used signals (See “man 7 signal' for more!)

1 SIGHUP
p SIGINT
9 SIGKILL
15 SIGTERM

19,18,25 SIGSTOP
18,20,24 SIGSTP
17,19,23 SIGCONT

hangup

keyboard interrupt
kill signal
termination signal
stop process

stop typed at tty
continue if stopped

ctrl+c sends SIGINT to a process (interrupt)

ctrl+z sends SIGSTP

signal handling, cont.

o processes can react to received signals
o terminate
o ignore it
o trap the signal (process invokes a signal handling
function)

kill

o kill processes
o (but only processes you have permission to kill)
o but can do more than just that!
o send signals to processes
o kill -1 lists all the signals you can send
o kill -s <signal> <pid>
o alternatively, kill -<signal number> <pid>
m kill -s SIGKILL <pid>
m kill -9 <pid>
m without args, default is to send SIGTERM

SIGTERM vs. SIGKILL

o what's the difference between:

o kill <PID>

o kill -9 <PID>

o A note about kill -9:

o generally, you should kill -15 (default) before kill -9
to give process chance to clean up after itself
(SIGTERM is more "polite")

m release file handles
m remove temporarily files, etc.
o processes can't catch orignore SIGKILL,

o but often ignore or catch SIGTERM

stubborn processes

o when kill -9 doesn't work

O
O
O

perhaps process is already a zombie

perhaps process is in uninterruptible sleep (D)
killing the zombie's parent process will re-parent
the zombie to init, which regularly reaps its zombie
children. (btw, that's another one of init's jobs)

killing processs -- other useful commands

killall, pkill - send signals/kill process based on
name instead of pid

pgrep --find processes based on name

pgrep -1 shows both process name and PID

O

Job control

job -- group of processes

multitasking -- we can run more than one job at a time
relegate jobs to the background, run jobs in the
foreground

appending ampersand (&) after a command runs itin

the background, in parallel with the shell

o foreground processes prevents shell from running another
command and returning the prompt until it terminates.

shell keeps track of all bg processes it spawns
o type jobs'to see a list

examples

$ sleep 10 & sleep 10 & sleep 10 &
(1] 16843
(2] 16844
(3] 16845

$ jobs

(1] Running sleep 10 &
2] Running sleep 10 &
3] Running sleep 10 &

job control, cont.

job identified by its job-id
this is different from the PID
bring a job back to the foreground with fg, background with bg
you can suspend a foreground process with ctrl+z (SIGSTP)
refer to a job with %
$ fg %<job id>
o make background job run in the foreground
$ bg % <job id>

o make process running in the foreground run in the background.
o you'd typically suspend the foreground process with ctrl+z, and then
run bg to let the job continuing running in the background

O O O O O

$ sleep 10 & sleep 10 & sleep 10 &
[1] 16843
[2] 16844
[3] 16845

cron

periodic scheduler

every scheduled job is specified as a single line in a
crontab

to edit entries in a crontab, run crontab -e

each user typically has their own crontab (although you
probably don't have permission to do this on your
instructional accounts)

Components of a crontab entry:

* % % % % command to be executed

L day of week (0-6) (Sunday = 0)
month (1-12)
day of month (1-31)
hour (0-23)

minute (0-59)

cron, cont.

command to be executed

day of week (0-6) (Sunday = 0)
month (1-12)

day of month (1-31)
hour (0-23)

minute (0-59)

* = matches any valid value

¥ ok % ok k= avery minute, every hour, every day of the
month, every month, every day of the week

you can specify ranges, groups of values:
eo-10 17 * 3,6,9,12 * <command>

<command> runs every minute from 17:00 - 17:10 every day
for march, june,sept, dec.

system run levels

refers to a mode of operation, determines which programs are
executed at startup

exact run levels vary across distributions
changing runlevels (can't run this without proper privileges, of

course)
O telinit <run level> or

O 1init <run level>

Typical run levels:

0 halt
1 single user mode
2-5 typically multi-user-mode, with various options

disabled/enabled (eg., networking)
6 reboot

