
Process Management
forks, bombs, zombies, and daemons!

Lecture 5, Hands-On Unix System Administration DeCal
2012-10-01

what is a process?

○ an abstraction!
○ you can think of it as a program in the midst of

execution
○ but also much more than just that!

what is a process?

○ "living result of running program code"
○ processes are born, they give birth to other processes,

and also die.
○ kernel is responsible for their management

○ resource allocation, process scheduling, etc.

relationships among processes

○ A process is always created by another process.
○ with the exception of init, executed directly by the

kernel during the boot process.
○ init is the parent/grandparent of all processes,

responsible for spawning all necessary processes
upon system startup

○ A process can spawn multiple children
○ hierarchical structure

○ pstree, ps auxf

exit status

○ children processes return a numeric status value to
their parents

○ exit statuses can tell the parent process if the
command succeeded or failed

○ Many (but not all) commands return a status of 0 if it
succeeded or non-zero if something went wrong

○ in bash, `echo $?' to obtain exit status of previous
command

○ common exit codes:
0 -- success!

1 -- a catch-all for general errors

127 -- command not found

130 -- termination by Ctrl+C

process attributes
○ process information stored internally in a process table
○ A process keeps its entry in the process table until it dies

(properly)
○ Some process attributes include:

○ PID (process-id): each process identified by a unique integer
○ PPID (parent-PID): PID of the parent
○ process states (see `man ps' for a complete list)

■ (R) Running: running or ready to run
■ (S) Interruptible: a blocked state of a process and waiting for an

event or signal from another process
■ (D) Uninterruptible: a blocked state; process can't be killed or

interrupted, usually
■ (T) Stopped: Process is stopped or halted and can be restarted

by some other process
■ (Z) Zombie: process terminated, but information is still there in

the process table.

ps

○ "process status"
○ obtain information on processes currently running on the system
○ options vary! they differ among different distributions
○ read the man page!! fields are also explained there!

○ in particular there are 3 sets of options in ps,

■ UNIX options, preceded by a -

● ps -ef # display all processes running on the system, in full
format listing

● ps -u # display processes you are running (or specify a user)

■ BSD options, no dash!

● ps aux # display all processes running on the system

■ GNU long options, -- (two dashes)

why you can't kill zombies.
○ How do zombie processes arise? What's a zombie process?

○ harmless dead child process that whose entry still exists in the
process table

○ can't exactly kill them because they're already dead.
○ parent usually picks up its children's exit statuses
○ To remove these process table entries occupied by zombies, try sending a

SIGCHLD signal to the parent manually (kill -s CHLD <parent pid>)

○ if a misbehaving parent doesn't pick up its dead child's exit status

■ child turns into zombie.

○ a good parent reaps its dead children.

orphans
○ a process becomes an orphan when its parent dies

before it does
○ kernel makes init the parent of all orphans
○ the orphan gets adopted by init

daemons
○ system-related background processes, no direct user

interaction needed
○ often started on system startup
○ often run with the permissions of root
○ services requests from other processes.
○ usually waiting for something to happen

○ eg, printer daemon is waiting for print commands.
○ examples:

○ sshd (listens for ssh connections from clients),
○ cupsd (printing system daemon)
○ httpd (web server daemon)

fork bombs
○ fork() -- create new, identical child process
○ form of denial of service (DoS) attack
○ ‘explodes’ by recursively spawning copies of itself rapidly
○ exhausts process table entries

○ can't create anymore processes
The classic example

:(){ :|: & };:

which is basically (in human readable form)
bomb() {
 bomb | bomb &
}; bomb

disclaimer: I am not responsible if you crash your laptop.

preventing fork bombs
○ limit resource usage.
○ limiting the number of processes a user can have
○ examples:

○ /etc/security/limit.conf
○ ulimit -u

process management
○ cron
○ kill
○ job control

process signal handling
○ processes can receive signals
○ provides limited inter-process communication
○ often used to communicate occurrence of an event
○ represented by numeric values (system-dependent)
○ kill -l to see available signals + corresponding numeric values

on your system
○ commonly used signals (See `man 7 signal' for more!)

1 SIGHUP hangup

2 SIGINT keyboard interrupt

9 SIGKILL kill signal

15 SIGTERM termination signal

19,18,25 SIGSTOP stop process

18,20,24 SIGSTP stop typed at tty

17,19,23 SIGCONT continue if stopped

ctrl+c sends SIGINT to a process (interrupt)

ctrl+z sends SIGSTP

signal handling, cont.
○ processes can react to received signals

○ terminate
○ ignore it
○ trap the signal (process invokes a signal handling

function)

kill

○ kill processes
○ (but only processes you have permission to kill)

○ but can do more than just that!
○ send signals to processes
○ kill -l lists all the signals you can send
○ kill -s <signal> <pid>
○ alternatively, kill -<signal number> <pid>

■ kill -s SIGKILL <pid>
■ kill -9 <pid>
■ without args, default is to send SIGTERM

SIGTERM vs. SIGKILL

○ what's the difference between:
○ kill <PID>
○ kill -9 <PID>

○ A note about kill -9:
○ generally, you should kill -15 (default) before kill -9

to give process chance to clean up after itself
(SIGTERM is more "polite")
■ release file handles
■ remove temporarily files, etc.

○ processes can't catch or ignore SIGKILL,
○ but often ignore or catch SIGTERM

stubborn processes
○ when kill -9 doesn't work

○ perhaps process is already a zombie
○ perhaps process is in uninterruptible sleep (D)
○ killing the zombie's parent process will re-parent

the zombie to init, which regularly reaps its zombie
children. (btw, that's another one of init's jobs)

killing processs -- other useful commands

○ killall, pkill – send signals/kill process based on
name instead of pid

○ pgrep -- find processes based on name
○ pgrep -l shows both process name and PID

Job control
○ job -- group of processes
○ multitasking -- we can run more than one job at a time
○ relegate jobs to the background, run jobs in the

foreground
○ appending ampersand (&) after a command runs it in

the background, in parallel with the shell
○ foreground processes prevents shell from running another

command and returning the prompt until it terminates.
○ shell keeps track of all bg processes it spawns

○ type `jobs' to see a list

examples
$ sleep 10 & sleep 10 & sleep 10 &
[1] 16843

[2] 16844

[3] 16845

$ jobs

[1] Running sleep 10 &

[2] Running sleep 10 &

[3] Running sleep 10 &

job control, cont.
○ job identified by its job-id
○ this is different from the PID
○ bring a job back to the foreground with fg, background with bg
○ you can suspend a foreground process with ctrl+z (SIGSTP)
○ refer to a job with %

$ fg %<job id>

○ make background job run in the foreground
$ bg % <job id>

○ make process running in the foreground run in the background.
○ you'd typically suspend the foreground process with ctrl+z, and then

run bg to let the job continuing running in the background

$ sleep 10 & sleep 10 & sleep 10 &

[1] 16843

[2] 16844

[3] 16845

cron
○ periodic scheduler
○ every scheduled job is specified as a single line in a

crontab
○ to edit entries in a crontab, run crontab -e
○ each user typically has their own crontab (although you

probably don't have permission to do this on your
instructional accounts)

○ Components of a crontab entry:

cron, cont.

* = matches any valid value

* * * * * = every minute, every hour, every day of the
month, every month, every day of the week

you can specify ranges, groups of values:

00-10 17 * 3,6,9,12 * <command>

<command> runs every minute from 17:00 - 17:10 every day
for march,june,sept, dec.

system run levels

○ refers to a mode of operation, determines which programs are
executed at startup

○ exact run levels vary across distributions

○ changing runlevels (can't run this without proper privileges, of
course)
○ telinit <run level> or
○ init <run level>

○ Typical run levels:

0 halt
1 single user mode
2-5 typically multi-user-mode, with various options

disabled/enabled (eg., networking)

6 reboot

