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Review
● $1, $2, ...; $@, $*, $#, $0, $?
● environment variables
● env, export
● $HOME, $PATH
● $PS1=n\[\e[0;31m\]\u\[\e[m\]@\[\e[1;34m\]\w \
[\e[2;90m\]\@\n\[\e[m\]\[\e[0;35m\]\h\[\e[m\]\
[\e[0;31m\]\$\[\e[m\]\[\e[0;32m\]

● quotes, ' and "
● aliases
● globbing
● backticks (`) 
● pipes (|) 



  

tee

● essentially a pipe
● mostly used to do 

$ sudo <command> | sudo tee <file>



  

find

● google search on steroids for file system
● regexes, depths, mtimes, types, groups, 
users, etc.

 $ find a b -type f ! -name 'crazy' -printf '%f\n'

$ find / -newer ttt -user wnj -print

$ find -L /usr/ports/packages -type l -exec rm -- {} +



  

xargs

● most used after a find:

-print0

 used with find to print NUL character generally for 
xargs

-0 

used in xargs in conjunction with -print0 for `find' 
for files with spaces

 $ find . -name 'randomcrapfile' | xargs rm

 $ find . -name 'filetobemoved' | xargs -I {} mv 
{} somefolder



  

locate

● cached google search for file system
● precompiled database

● faster than `find', but not as detailed 
in search



  

for  and  while loops

● built into shell

Structure:

One-liner, with semi-colons:

 $ for {something}; do somecommand;       
 someothercommand; done

for {something}
do 
   somecommand 
   someothercommand
done



  

for and while loops

 Structure

 One-liner, with semi-colons:
$ while {some expression}; do somecommand; 
someothercommand; done

while {something}
do 
   somecommand 
   someothercommand
done



  

awk

● full programming language
● generally used to do (simple) regular 
expressions on files

● More info at: 
https://en.wikipedia.org/wiki/Awk, 
http://www.grymoire.com/Unix/Awk.html



  

Moar shell-fu

● grep

● sed

● cut

● tr

● wc

● sort 

● head

● tail



  

tr

● SET1 and SET2 define ordered sets of 
characters (characters of input that `tr' 
operates on)  

● Function is to replace, squeeze, remove 
characters from its input 
– No filenames to provide as arguments

● Reads stream from stdin, writes to stdout

 tr [OPTION]... SET1 [SET2]



  

tr

● Examples

– Replace characters in SET1 with 
corresponding characters in SET2

can use ranges (e.g, a-z A-Z) 

● Commonly used options

-d, --delete 

-s, --squeeze-repeats

 tr [OPTION]... SET1 [SET2]

$ echo “the quick brown fox” | tr abc def 

$ echo “the quick brown fox” | tr a-z A-Z 



  

sort

● Useful options:

-d, --dictionary-order 
● Consider blanks and alphanumeric characters

-n, --numeric-sort

Sort by numerical value

-r, --reverse

Reverse the result of comparisons

-f, --ignore-case

-k(column), -nk2 means sort column 2 numerically

 sort [OPTION]... [FILE]...



  

cut

● Print selected parts of lines from each 
FILE (or stdin) to stdout

● Useful options:

-d, --delimter=DELIM

-f, --fields=LIST

 cut [OPTION]... [FILE]...



  

head/tail

● View first/last parts of file
● Useful for viewing logs
● Default: view first/last 10 lines
● Common options

– -n, --lines=N 
● Output first/last N lines, 

● tail -f <file>
– “follow” the file, output appended data as <file> grows

● tail -n +N <file> or tail --lines=+N <file>
– Starting from N, output N to rest of file

● head --lines=-N <file>
– View everything but the last N lines in <file> 

 



  

wc

● Word count
● Print newline, word, and byte counts
● wc -l, print newline count (count lines)
● wc -w, print word count 



  

Regular Expressions (regex)

● String matching
● Set of metacharacters let you search for text that fits 
criteria

● Text editors, utilities, programming languages 
 grep, sed, awk, vi(m)
 Perl, Ruby, etc.

● Many flavors, POSIX BRE
● Regex  globs/wildcards≠

● Different sets of metacharacters used for different 
purposes

● Filename expansion vs. string matching

● The shell itself does not recognize RE's. It is the 
commands and utilities, that do.



  

Basic Regex

\  (backslash) turn off special meaning of 
following character (escaping)

.  (period) match any single character 

[..] (bracket expression) 
– Matches ONE of any of the enclosed characters

– Hyphens indicate a range of characters (a-z, A-Z, 0-9)

*  (a quantifier) match any number or none of 
preceding character 
– e.g, a* matches 'abc', 'bc' 

– aa* matches 'abc' but not 'bc' 



  

Anchors (regex)

Specify where matching text should be

^ Match following regex at beginning of 
line 

$ Match preceding regex at end of line



  

Examples 

Regex    | Matches
-------------------------------------------------------------------

tolstoy    | tolstoy, anywhere 

^tolstoy   | tolstoy, beginning of line

tolstoy$   | tolstoy, end of line

^tolstoy$  | a line containing exactly 'tolstoy' and 
nothing else 

[Tt]olstoy | Either Tolstoy or tolstoy

tol.toy    | tol, followed by any character, 
followed by toy

Tol.*toy   | tol, any sequence of 0 or more 
characters, followed by toy



  

grep

● Match text (PATTERN can be w/ or w/o regex)
● Grep (BRE), egrep/grep -E (ERE), fgrep/grep -F 
(match fixed strings) 

● Can search with fixed strings, or with regexes
● Common options 

-i case insensitive search

-l list names of files instead of printing the actual 
matching lines

-v print lines that DON'T match the pattern

-e <pattern> 
● Use multiple -e options to search with multiple patterns 

 grep [OPTIONS] PATTERN [FILE...]   



  

sed

● Stream editor for filtering and transforming text 
on an input stream (file or input from pipeline)

● Commonly used to perform text substitution in a 
pipeline

● 'COMMAND' is often substituting, appending, 
inserting, deleting text

SUBSTITUTION:

'old value' can be a regex

 sed [OPTIONS] 'COMMAND' [FILE...]    sed [OPTIONS] 'COMMAND' [FILE...]    sed [OPTIONS] 'COMMAND' [FILE...]   

sed 's/old value/new value/(flags)' <file>



  

sed substitution

● Common flags

– n  replace nth instance of pattern with –
replacement

– g  replace ALL instances of pattern with –
replacement 

– Without flags, sed replaces first instance of 
'old value' with 'new value' in each line

 sed [OPTIONS] 'COMMAND' [FILE...]    sed [OPTIONS] 'COMMAND' [FILE...]   sed 's/old value/new value/(flags)' <file>

$ echo “I hate this decal” | sed 's/hate/love/'  $ echo “I hate this decal” | sed 's/hate/love/'  

$ echo “hi hi hi” | sed 's/hi/bye/'   



  

sed: deletion

● {what to find} can be:

– Range of lines: sed '1,3d' <myfile.txt>

– Regex: sed '/#/d' (delete comments maybe?)

Other sed commands include insertion (i) and 
appending text (a)

 sed [OPTIONS] 'COMMAND' [FILE...]    sed [OPTIONS] 'COMMAND' [FILE...]   sed '{what to find} d' <file>       # deletion



  

Common options
● Many commands share some common options:

-h/--help

-v/--verbose

-d/--debug

-f/--force or file input

-R recursive
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