

 Lecture 3

Tonight we dine in shell
 Lecture 3

Tonight we dine in shell

Hands-On Unix System Administration DeCal
2012-09-17

Review
● $1, $2, ...; $@, $*, $#, $0, $?
● environment variables
● env, export
● $HOME, $PATH
● $PS1=n\[\e[0;31m\]\u\[\e[m\]@\[\e[1;34m\]\w \
[\e[2;90m\]\@\n\[\e[m\]\[\e[0;35m\]\h\[\e[m\]\
[\e[0;31m\]\$\[\e[m\]\[\e[0;32m\]

● quotes, ' and "
● aliases
● globbing
● backticks (`)
● pipes (|)

tee

● essentially a pipe
● mostly used to do

$ sudo <command> | sudo tee <file>

find

● google search on steroids for file system
● regexes, depths, mtimes, types, groups,
users, etc.

 $ find a b -type f ! -name 'crazy' -printf '%f\n'

$ find / -newer ttt -user wnj -print

$ find -L /usr/ports/packages -type l -exec rm -- {} +

xargs

● most used after a find:

-print0

 used with find to print NUL character generally for
xargs

-0

used in xargs in conjunction with -print0 for `find'
for files with spaces

 $ find . -name 'randomcrapfile' | xargs rm

 $ find . -name 'filetobemoved' | xargs -I {} mv
{} somefolder

locate

● cached google search for file system
● precompiled database

● faster than `find', but not as detailed
in search

for and while loops

● built into shell

Structure:

One-liner, with semi-colons:

 $ for {something}; do somecommand;
 someothercommand; done

for {something}
do
 somecommand
 someothercommand
done

for and while loops

 Structure

 One-liner, with semi-colons:
$ while {some expression}; do somecommand;
someothercommand; done

while {something}
do
 somecommand
 someothercommand
done

awk

● full programming language
● generally used to do (simple) regular
expressions on files

● More info at:
https://en.wikipedia.org/wiki/Awk,
http://www.grymoire.com/Unix/Awk.html

Moar shell-fu

● grep

● sed

● cut

● tr

● wc

● sort

● head

● tail

tr

● SET1 and SET2 define ordered sets of
characters (characters of input that `tr'
operates on)

● Function is to replace, squeeze, remove
characters from its input
– No filenames to provide as arguments

● Reads stream from stdin, writes to stdout

 tr [OPTION]... SET1 [SET2]

tr

● Examples

– Replace characters in SET1 with
corresponding characters in SET2

can use ranges (e.g, a-z A-Z)

● Commonly used options

-d, --delete

-s, --squeeze-repeats

 tr [OPTION]... SET1 [SET2]

$ echo “the quick brown fox” | tr abc def

$ echo “the quick brown fox” | tr a-z A-Z

sort

● Useful options:

-d, --dictionary-order
● Consider blanks and alphanumeric characters

-n, --numeric-sort

Sort by numerical value

-r, --reverse

Reverse the result of comparisons

-f, --ignore-case

-k(column), -nk2 means sort column 2 numerically

 sort [OPTION]... [FILE]...

cut

● Print selected parts of lines from each
FILE (or stdin) to stdout

● Useful options:

-d, --delimter=DELIM

-f, --fields=LIST

 cut [OPTION]... [FILE]...

head/tail

● View first/last parts of file
● Useful for viewing logs
● Default: view first/last 10 lines
● Common options

– -n, --lines=N
● Output first/last N lines,

● tail -f <file>
– “follow” the file, output appended data as <file> grows

● tail -n +N <file> or tail --lines=+N <file>
– Starting from N, output N to rest of file

● head --lines=-N <file>
– View everything but the last N lines in <file>

wc

● Word count
● Print newline, word, and byte counts
● wc -l, print newline count (count lines)
● wc -w, print word count

Regular Expressions (regex)

● String matching
● Set of metacharacters let you search for text that fits
criteria

● Text editors, utilities, programming languages
 grep, sed, awk, vi(m)
 Perl, Ruby, etc.

● Many flavors, POSIX BRE
● Regex globs/wildcards≠

● Different sets of metacharacters used for different
purposes

● Filename expansion vs. string matching

● The shell itself does not recognize RE's. It is the
commands and utilities, that do.

Basic Regex

\ (backslash) turn off special meaning of
following character (escaping)

. (period) match any single character

[..] (bracket expression)
– Matches ONE of any of the enclosed characters

– Hyphens indicate a range of characters (a-z, A-Z, 0-9)

* (a quantifier) match any number or none of
preceding character
– e.g, a* matches 'abc', 'bc'

– aa* matches 'abc' but not 'bc'

Anchors (regex)

Specify where matching text should be

^ Match following regex at beginning of
line

$ Match preceding regex at end of line

Examples

Regex | Matches

tolstoy | tolstoy, anywhere

^tolstoy | tolstoy, beginning of line

tolstoy$ | tolstoy, end of line

^tolstoy$ | a line containing exactly 'tolstoy' and
nothing else

[Tt]olstoy | Either Tolstoy or tolstoy

tol.toy | tol, followed by any character,
followed by toy

Tol.*toy | tol, any sequence of 0 or more
characters, followed by toy

grep

● Match text (PATTERN can be w/ or w/o regex)
● Grep (BRE), egrep/grep -E (ERE), fgrep/grep -F
(match fixed strings)

● Can search with fixed strings, or with regexes
● Common options

-i case insensitive search

-l list names of files instead of printing the actual
matching lines

-v print lines that DON'T match the pattern

-e <pattern>
● Use multiple -e options to search with multiple patterns

 grep [OPTIONS] PATTERN [FILE...]

sed

● Stream editor for filtering and transforming text
on an input stream (file or input from pipeline)

● Commonly used to perform text substitution in a
pipeline

● 'COMMAND' is often substituting, appending,
inserting, deleting text

SUBSTITUTION:

'old value' can be a regex

 sed [OPTIONS] 'COMMAND' [FILE...] sed [OPTIONS] 'COMMAND' [FILE...] sed [OPTIONS] 'COMMAND' [FILE...]

sed 's/old value/new value/(flags)' <file>

sed substitution

● Common flags

– n replace nth instance of pattern with –
replacement

– g replace ALL instances of pattern with –
replacement

– Without flags, sed replaces first instance of
'old value' with 'new value' in each line

 sed [OPTIONS] 'COMMAND' [FILE...] sed [OPTIONS] 'COMMAND' [FILE...] sed 's/old value/new value/(flags)' <file>

$ echo “I hate this decal” | sed 's/hate/love/' $ echo “I hate this decal” | sed 's/hate/love/'

$ echo “hi hi hi” | sed 's/hi/bye/'

sed: deletion

● {what to find} can be:

– Range of lines: sed '1,3d' <myfile.txt>

– Regex: sed '/#/d' (delete comments maybe?)

Other sed commands include insertion (i) and
appending text (a)

 sed [OPTIONS] 'COMMAND' [FILE...] sed [OPTIONS] 'COMMAND' [FILE...] sed '{what to find} d' <file> # deletion

Common options
● Many commands share some common options:

-h/--help

-v/--verbose

-d/--debug

-f/--force or file input

-R recursive

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

