
Group Lab: Configuring and compiling the Linux kernel

Hands-On Unix System Administration DeCal

Lab 10 — 05 November 2012
Due 26 November at 6:10 PM for “extra credit”

1 Introduction

Recall that the kernel is essentially the core of an operating system. It is responsible for managing memory
and processes, allocating and managing system resources, controlling and mediating access to hardware,
among many other responsibilities.

In this lab we’ll introduce you to the Linux kernel and briefly step through the kernel compilation process.
You will be working with your group on your final project VM. You might want to take a snapshot of your
VM before you begin the lab. This lab assumes that you already have a working VM set up (with an
operating system and such). You and your group will turn in one lab, with all your names on it + your
group name.

The goal of this lab is to give you a general idea of how to configure, compile, and boot from a new
kernel. As scary as that might sound, it really isn’t that bad. Now you can tell your friends that you know
how to compile a linux kernel and they’ll be in awe of your uber smartness.

Because we want you to focus on your final project, you won’t be penalized if you are unable to boot
from your new kernel when you finish the lab. Please document any difficulties you have along the way, any
error messages you come across, and how you debugged them. Though you won’t be penalized for some
incompleteness (this is a sort of experimental lab we’re trying), please make an honest effort, this is supposed
to be fun!

2 Fetching the kernel source

To begin, let’s fetch the kernel source from kernel.org with wget -c (I’m not imposing any version restrictions
on you since this exercise is purely for learning purposes)

Say you want to fetch the latest stable kernel from kernel.org:

$ wget -c http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.6.6.tar.bz2

Now copy this archive to your build directory (e.g., some directory in your homedir. in this example, I
am copying the archive to a directory I made in my homedir called kernelbuild):

$ cp linux-3.6.6.tar.bz2 ~/kernelbuild/

Unpack the archive and cd into the source directory.

$ cd ~/kernelbuild

$ tar -xvjf linux-3.6.6.tar.bz2

$ cd linux-3.6.6

Run ls and explore for a bit. You’ll see many directories containing C code organized by various
functions such as memory management (in directory mm/), and other stuff like architecture-specific code
(arch/), filesystems (fs/), drivers (drivers/). If you’re interested in reading more about what are in these
directories, here’s a link to a webpage with pretty good explanations: http://www.xml.com/ldd/chapter/
book/ch16.html

Next, run make mrproper to ensure that the source tree is clean.

1

http://www.xml.com/ldd/chapter/book/ch16.html
http://www.xml.com/ldd/chapter/book/ch16.html

3 Kernel build configuration

Now it’s time to configure and customize your kernel.
You probably don’t want to configure your kernel from scratch (as that takes a lot of time), so let’s use

the configuration from the currently running kernel. If you are compiling a kernel for the first time, it is
usually a good idea to take the configuration of your existing (working!) kernel as a starting point for the
configuration of your new kernel. Typically the current kernel configuration is saved in a file under /boot,
in Debian-based distros (for example, something like /boot/config-2.6.3).

Copy this config file over to your build directory, and rename it .config:

$ cp /boot/config-blahblah ~/kernelbuild/linux-3.6.6/.config

If you don’t find it there, you might have a config file in /proc (/proc/config.gz). In that case, use zcat
to obtain its contents and copy it over to a .config file in your build directory.

$ zcat /proc/config.gz > ~/kernelbuild/linux-3.6.6/.config

Now that we have the old configuration in place run:

$ make oldconfig

This basically lets you start with a pre-existing .config file and prompts the user for options in the current
kernel source that are not found in the file. This is useful when taking an existing configuration and moving
it to a new kernel (like what we’re doing here!). When you run make oldconfig, you’ll be prompted with a
bunch of new options that weren’t in the old configuration. For now, we won’t get into the details of these
options, go ahead and just select the defaults for all of them (just hitting enter will automatically select the
default option).

After make oldconfig, you could (optionally) run make menuconfig to visually see and fine-tune your
options in a more user-friendly interface. make menuconfig will present you with a nice menu that allows
you to set options and see what options have already been set. (you will need the ncurses library) You
don’t have to make any changes here.

Exercise 1 Now that you have a configuration file for the new kernel, list three options you find in
.config. What are they set to? (y/n/m?) What do you think each option means (e.g., what feature does
it enable/disable)? (You will probably have to search the internets)

4 Compilation and Installation

We’ve finished configuring our kernel, so now it’s time to compile it. Run:

$ make

or

$ make -jN

to spawn multiple jobs, where N is usually the number of cores + 1. This will speed things up.
Compilation time can vary from as short as 15 minutes to well over an hour. Speed is mostly based

on how many options/modules were selected, as well as processor power. Since you’re most likely using a
generic configuration, many modules will be compiled and this overall process can take some time. Go grab
a cup of coffee or something while you wait.

Exercise 2 How long did compilation take? Did you use multiple threads? How many? (make -jN) Did
you run into problems during the process?

After the kernel has finished compiling, we need to install the kernel modules.
Modules are pieces of code that can be loaded and unloaded into the kernel on demand. They extend the

functionality of the kernel without requiring you to reboot your machine. For instance, one type of module
is the device driver, which allows the kernel to interact with hardware connected to the system.

Exercise 3 Run lsmod to get a list of currently loaded kernel modules on your system. List three of
them, and describe their functions (may need to search the internet for hints!)

2

Now, back to installing modules. Run, as root, in your build directory:

make modules_install

This copies the compiled modules into /lib/modules/[kernel version]. They are installed in a specific
directory so that modules can be kept separate from those used by other kernels on your machine.

Finally, we will install the kernel image we just built to the /boot directory. Later we will be configuring
your bootloader to add an option to boot from this kernel.

IMPORTANT. Make sure you keep your existing kernel (in /boot) around as a backup.
(check out /boot and see what sort of stuff’s in there. Kernels are usually prefixed with
vmlinux-

Finally, from your build directory, run:

make install

5 Make initial RAM disk

The initial RAM disk (specified as the initrd option in the GRUB menu, or, the file ”initramfs-YourKernelName.img
in /boot”) is an initial root file system that is mounted before the real root file system becomes available.
I won’t get into the details, but the initrd, in a nutshell, is a transient filesystem bound to the kernel and
loaded as part of the kernel boot procedure. The initrd contains various executables and drivers that permit
the real root file system to be mounted. Its lifetime is short, only serving as a bridge to the real root file
system.

Let’s build the ramdisk. The -k parameter accepts the kernel version, or the path to a kernel image:

cd /boot; mkinitramfs -k 3.6.6 -o initrd.img-3.6.6

6 Configure the bootloader

A bootloader is basically a small program that loads the operating system into the computerwhen the system
is booted and also starts the operating system.

We’re now going to add an entry for your awesome new kernel in your bootloader’s configuration file.
(MOST likely, your bootloader is GRUB or GRUB2...doubt anyone will be using LILO, in that case, Google
is your friend.), the following are instructions for GRUB Legacy.

If you’re using GRUB Legacy (not GRUB2), you could probably run a command named update-grub

that wil automatically update your grub menu file and add a new kernel entry for you. update-grub is a
program used to generate the menu.lst file used by the grub bootloader. It works by looking in /boot for all
files which start with ”vmlinuz-”. They will be treated as kernels, and grub menu entries will be created for
each.

Try running the following to see what version of grub you have:

$ grub --version

Then,

update-grub

or if you have GRUB2:

update-grub2

If you don’t have update-grub available, we can always edit /boot/grub/menu.lst manually and add an
entry for your new kernel. It’s easiest if you just copy an existing entry and modify the fields as appropriate.
Here’s a sample entry might look like:

3

title Arch Linux 3.6.6

root (hd0,0)

kernel /vmlinuz-3.6.6 root=<root partition> ro

initrd /initramfs.img-3.6.6

The root partition simply refers to where the root directory (/) is stored. You’ll most likely have an entry
with the root= field already specified, so just copy that. Save the file. You should now have the following
things in the /boot directory:

vmlinuz-YourKernelName (Kernel)
initramfs-YourKernelName.img (Ramdisk)
You’re pretty much done. Take a deep breath and reboot your VM. Hopefully you’ll see your new kernel

in the bootloader menu, select it and pray that your machine boots!
If thinks appear borked, that’s okay, you can still boot from the other kernel that you should have (select

that one instead from the bootloader menu). Note any error messages you come across and list them. (for
example, ”I got dropped to a recovery shell, was unable to find root disk.”)

If things miraculously worked, your machine should be running the new kernel. Congrats! Note the
output of uname -a to verify things worked.

Exercise 4 Describe any difficulties you went through, any error messages you saw, etc. Did your
machine successfully boot from your new kernel? Did things break? Was this a difficult lab? (This is more
of a reflection exercise.)

4

