
Pipes, streams, and the user environment

Hands-On Unix System Administration DeCal

Lab 2 — 10 September 2012
Due 17 September at 6:10 PM

1 Environment variables and bash startup files

1.1 .bashrc and .bash profile

Bash uses a collection of startup files to create an environment. For example,
you can initialize parameters, set your PATH, change what your prompt looks
like, and much more. In this section we’ll look at .bashrc and .bash profile.

What’s the difference? .bashrc and .bash profile are invoked in dif-
ferent settings. .bash profile is executing for login shells, while .bashrc is
executed for interactive, non-login shells (See man bash). System-wide shell ini-
tialization files are typically in /etc, owned by root. They are /etc/profile

and /etc/bashrc. Users’ profile and shell rc files are owned by the user, and
they reside in their home directories. (~/.bash profile and ~/.bashrc)

Why the distinction? Say, for example, there are certain things you’d
want to see upon login only (such as system information, like load average,
or number of current users, etc.). You’d want to edit .bash profile to do
that. If you put it in your .bashrc, you’d see it every time you launch a new
terminal/shell.

1. Edit your .bash profile and add a variable called MYNAME.

MYNAME="Bob"

Edit your .bashrc and add a variable, MYFAVCOLOR.

MYFAVCOLOR="red"

Save the two files, logout, and login again. (To be clear, we’re expecting
you to be using a login shell for the following exercises).

Tip: You can emulate a login shell by running bash --login.

2. Now type the following.

$ echo $MYNAME

$ echo $MYFAVCOLOR

What happens? Explain why.

1



3. Type bash, do the same thing.

$ bash

$ echo $MYNAME

$ echo $MYFAVCOLOR

What happens? Explain why.

4. You can see if you are using a login shell by running shopt | grep

login shell. How does the value of this option (on/off) correlate with
the behavior you just saw?

1.2 Playing with environment variables

5. Open a terminal and define the following variables.

$ FOO="foo" ; export FOO

$ BAZ="baz"

Now let’s try accessing our newly defined variables

$ echo $FOO

$ echo $BAZ

$ bash

$ echo $FOO

$ echo $BAZ

What happens, and why? Explain the difference between FOO and BAZ.

6. Define a PS1 variable that includes the following:

• The day and month

• The current time in 12-hour am/pm format

• your username

• the hostname

• the current working directory

7. Let’s add a new directory to PATH.

Before we do anything, note the output of ls

$ ls

Create a new directory.

$ mkdir stuff

Let’s put a simple shell script in there.

$ echo ’echo "herro"’ > stuff/ls

$ chmod u+x stuff/ls
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Now alter your PATH variable such that the stuff directory is listed first.

$ PATH=~/stuff:$PATH

Now when you run ls, what happens? Explain why.

How does the order of PATH matter? What would happen if we had placed
~/stuff at the end of the PATH?

8. Type the following, and note the output.

$ echo $SHELL

$ echo ’$SHELL’

What do you notice? Why does this happen?

9. Explain the behavior of the following command.

$ echo ’`find \$HOME -type d -print | wc -l`’ > directories

Modify it so it works as intended (i.e., count the number of directories in
$HOME)

2 Wildcards

10. Match the filenaames lecture01, lecture09, lecture13, lecture26 with a wild-
card expression.

3 Streams, redirection, and pipes

11. What is /dev/null usually used for?

12. What happens when you use

(a) cat > foo, if foo contains data

(b) who >> foo, if foo doesn’t exist

(c) cat foo > foo

(d) echo 1> foo

13. Write a simple pipeline using getent passwd, and the cut utility (see man
cut), to extract usernames and real names. You may want to run getent

passwd to get a feel for what it does first.
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3.1 Named pipes

14. Name one difference between named pipes and unamed pipes (other than
the obvious).

15. Let’s create a named pipe with mkfifo.

$ mkfifo pipe

If you run ls -l pipe, you’ll see it looks just like a file. It could be
deleted with rm, like so:

$ rm pipe

Now try running this command:

$ ps -e > pipe

Instinctively, you’d expect to be returned to a prompt, but it appears to
”hang”. Explain why.

Now open another terminal, and run the following command in the second
terminal.

$ cat pipe

What is the output of this command? Is the command you had typed in
the first terminal still ”hanging”? Explain the interaction between these
two processes in a sentence or two.

4 Extra for ExpertsTM!

4.1 Pipe madness

Using two commands, think of a way to generate a loop using named pipes.
What happens to the CPU usage?
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