
Network Services

Hands-On U System Administration DeCal

Lab 8 — 14 March 2011
Due 28 March at 6:10 PM

1 Final project
Final project proposals are due in hard copy at the start of next class, 28 March (after
spring break). Please arrange to stick around after the lecture portion of class is complete
that day — I’ll be meeting with each group to discuss your proposals during lab. Your
proposal should include the following:

• Elevator pitch. Convince me that your project is awesome. What will it do, and
why should I care? What problem will it solve, or how will it make my life as a U
systems administrator easier?

• Summary. How do you plan to implement your project? Include requests for addi-
tional resources — e.g., additional VMs, different operating systems, custom DNS
records, ports forwarded, etc.; I’ll attempt to honor any reasonable requests.

• Timeline. List major milestones necessary to complete your project, how long each
should take, and by when you plan to have ënished each milestone. You’ll be pre-
senting your project to the class on 25 April, so plan accordingly.

Bonus points1 if your proposal looks professional (hint: if you’re a CS or maths major, you
really should learn how to use LATEX).

2 DNS queries
If you’re doing this exercise on an Instructional server, note that host and dig are installed
but are not in your PATH. If you’re using your virtual server, you should install the host
and dnsutils packages.

1. Use host to look up the MX record for Berkeley.EDU. Show the syntax you used.

2. What’s an NS record, and what are Berkeley.EDU’s NS records? Where are the
servers Berkeley’s NS records point to actually located, and why might IST have set
things up that way?

1Well, not really — this is a pass/not-pass class, after all. But you do want to be awesome, don’t you?

1



3. Use dig to perform the same queries as in questions (1) and (2), and show the syntax
you used. en run dig with no arguments — what do you see in the “ANSWER
SECTION”? What are these servers?

3 HTTP
(You’ll want to install netcat on your virtual server before continuing.) In this part, you’ll
be writing a simple shell script that downloads the contents of an arbitrary URL, saving
the result to the ële “output.” Assume that the URL your script is passed is in the format

http://www.example.com/path/to/document

(don’t worry about escapes or special characters). Here’s what your script should do:

1. Use cut to extract the domain name (www.example.com) and the path (/path/to/…).
Bear in mind that a valid path can contain an arbitrary number of slashes.

2. Use nc to connect to the server on port 80. (You can pipe input into netcat’s stdin.)
An HTTP request looks like this:

GET /path/to/document HTTP/1.1
Host: www.example.com
(newline)

Use echo and the “enable interpretation of backslash escapes” option — your HTTP
request, on one line, will look something like

GET /path/to/document HTTP/1.1\nHost: www.example.com\n\n

(note the two concluding newlines).

3. Pipe this input into a read loop. We’re not interested in the HTTP headers, which
are terminated by a blank line, so you should discard lines until you ënd an empty
one. (To check if you’ve found an empty line, test whether it’s equal to the output
of echo -e '\r' — try comparing it to $'\r'.) Once you’ve found a blank line,
echo every remaining line.

4. Save the output of this read loop to a ële called “output.”

Before you begin, try out nc and echo -e on their own and make sure you understand
how they work.

Extra for Experts™!
Once you’re done, if you’re feeling adventurous, you might try…

• e ëlename “output” is not very descriptive. Make your script save its output
somewhere more useful.

2



• Look at the Wikipedia article on HTTP status codes. e ërst HTTP header your
script receives includes a status code — common ones include “200 OK,” “301 Moved
Permanently,” “404 Not Found,” and so on. Build in support for a few of these
status codes — maybe follow redirects (look at the Location: header), or print a
warning when you encounter a 404.

• If you’re a shell-scripting ninja, you ënished the entire lab in ten minutes ìat, and
you’re bored, read the appropriate RFCs and write a bash-based IRC client.

3


