
Network Services

Intermediate U System Administration DeCal

Lab 7 — 29 March 2010
by Jordan Salter, with thanks to Joshua Kwan

Introduction
is week’s lecture gave an overview of Internet services — how you access them, and how
remote servers provide them; this lab is a continuation of that overview. You should do
these exercises on your virtual servers, except where otherwise noted; answers should be
mailed to mgasidlo+decal@OCF.Berkeley.EDU.

1 Interacting with Mail Locally
Let’s start by poking around with some standard U mail commands. You should do
these exercises on one of the OCF’s Solaris servers (apocalypse or conquest — I recom-
mend the latter), since we’ve already con gured sendmail for you.

1. Use the mail command to send yourself a message. How do you specify a subject?
How do you read your mail using this command?

2. Play around with pine and mutt and gure out how to read and send mail messages
in both. Which do you prefer, and why?

3. “Real men” use ed, the standard text editor, over emacs and vi. e mail client war
is a bit like the editor war, and “real men” send mail with netcat (telnet works in
a pinch). See what you think — try using sendmail -t or sendmail -bs (what’s
the difference?) to manually send a message to your neighbor. Include a transcript
of your session in your submission.

2 DNS queries
Before you begin, install the host and dnsutils packages.

1. Use host to look up the MX record for Berkeley.EDU. Show the syntax you used.

2. ere are many different types of DNS records. What’s an NS record, and what are
Berkeley.EDU’s NS records? Where are the servers Berkeley’s NS records point to
actually located, and why might IST have set things up that way?

1



3. Use dig to perform the same queries as in questions (1) and (2), and show the syntax
you used. en run dig with no arguments — what do you see in the “ANSWER
SECTION”? What are these servers?

3 HTTP
(You’ll want to install netcat on your virtual server before continuing.) In this part, you’ll
be writing a simple shell script that downloads the contents of an arbitrary URL, saving
the result to the le “output.” Assume that the URL your script is passed is in the format

http://www.example.com/path/to/document

(don’t worry about escapes or special characters). Here’s what your script should do:

1. Use cut to extract the domain name (www.example.com) and the path (/path/to/…).
Bear in mind that a valid path can contain an arbitrary number of slashes.

2. Use nc to connect to the server on port 80. (You can pipe input into netcat’s stdin.)
An HTTP request looks like this:

GET /path/to/document HTTP/1.1
Host: www.example.com
(newline)

Use echo and the “enable interpretation of backslash escapes” option — your HTTP
request, on one line, will look something like

GET /path/to/document HTTP/1.1\nHost: www.example.com\n\n

(note the two concluding newlines).

3. Pipe this input into a read loop (like you did with rename-tv). We’re not interested
in the HTTP headers, which are terminated by a blank line, so you should discard
lines until you nd an empty one. (To check if you’ve found an empty line, test
whether it’s equal to the output of echo -e ’\r’ — try comparing it to $’\r’.)
Once you’ve found a blank line, echo every remaining line.

4. Save the output of this read loop to a le called “output.”

Before you begin, try out nc and echo -e on their own and make sure you understand
how they work.

Extra for Experts™!
Once you’re done, if you’re feeling adventurous, you might try…

• e lename “output” is not very descriptive. Make your script save its output
somewhere more useful.

2



• Look at the Wikipedia article on HTTP status codes. e rst HTTP header your
script receives includes a status code — common ones include “200 OK,” “301 Moved
Permanently,” “404 Not Found,” and so on. Build in support for a few of these
status codes — maybe follow redirects (look at the Location: header), or print a
warning when you encounter a 404.

• If you’re a shell-scripting ninja, you nished the entire lab in ten minutes at, and
you’re bored, read the appropriate RFCs and write a bash-based IRC client.

3


