
Shell Scripting
Intermediate Systems Administration DeCal

Lecture #6
 Michael Gasidlo

Today

• Unlock the raw power of the shell as a
programming language!

• How to use variables + special variables

• How to create functions

• Control structures: for, while, if, case

• Input functionality with read, shift

• Shell builtins: echo, printf, let, test (aka [)

Shell scripts

• At their simplest, just a list of commands
executed in order as if you had typed them
into the shell.

• Anything you can do at the shell, you can
do in a shell script, and vice versa.

• Like DOS batch scripts, but way better.

• Run them by putting “#!/bin/sh” at the top
and using chmod +x to make executable.

Variables

• Assignment: FOO=“Test 1 2 3”

• Reference: echo $FOO or echo “$FOO”
(What’s the difference?)

• Want to set a variable to the output of a
command? Input substitution!
FOO=$(ls pictures)

Special Shell Variables

• $1, $2, $3.. - arguments passed in on
command line.

• $@ - all arguments as a big string.

• $# - number of arguments passed in

• $? - exit code of last program; you knew this
already

• $$ - your process ID

• $! - process ID of last program started w/ ‘&’

Functions

• When you make a shell script, lines of code
are executed top-to-bottom

• If you make functions, they won’t be run
though, just declared. You can use them as if
they were separate programs.

• Learn by example! We know enough to
write a simple program now.

Example 1
#!/bin/sh

confuciusprint() {

 echo "Confucius say: \"$@\""
}

confuciusprint "Baseball wrong. Man with four balls cannot walk."

echo "OK, now it's your turn! Here's your quote:"

confuciusprint "$@"

echo "What if it were only the first word you said?"

confuciusprint "$1"

Control structures
• For loops set a variable based on the contets of a

list (like python, unlike C):
for x in $(seq 1 9); do touch $x;
done

• While loops test a condition and exit when the
condition is 1. You can also run a program...
while ! try_to_connect; do echo
“Trying to connect...”; done

• and if statements behave the same way (use a
conditional or a program), but they don’t loop
if [$SUM -eq 0]; then echo Zero;
fi

Control structures

• You can have many conditional branches with
if: if ...; then ...; elif ...;
then ...; else ...; fi

• case statements; like switch in C, for many
nested ifs:
case “$x” in
[aA]) echo “a for anteater!” ;;
b|c) echo “you typed in b or c” ;;
*) echo “who knows what you typed”;;
esac

Conditionals

• In a previous example we did this:
if [$SUM -eq 0]; then
 echo Zero
fi

• This is a conditional, however it’s implemented
using a program called [that evaluates the
condition and returns 0 or 1.

• test is the same thing, but it doesn’t require a
closing bracket. Personal taste.
if test $SUM -eq 0; then ...

Conditionals
• [-n “$var”]: returns true if $var is non-

blank (opposite: -z)

• [“$var” -eq 1]: returns true if $var is a
number and is 1. (opposite: -ne)

• Ditto for -ge (greater/equal), -gt (greater than),
-le (less/equal), -lt (less than)

• [“$var” = foo]: returns true if $var equals
“foo” by string comparison. (opposite: !=)

• [-f “file.txt”]: returns true if file.txt
exists and is a file. No opposite; negate it, e.g.
[! -f “file.txt”]

Input processing

• Want to use standard input? read var
will read one line of standard input into
$var. A typical construct:

while read line; do
 do stuff with $line
done

Input processing

• You can also parse your command line
arguments one by one.
while [$# -gt 0]; do
 echo “$1”
 shift
done

• shift will delete $1, and shift everything else
down. ($2 becomes $1, $3 becomes $2).
Then it decrements the value of $#.

Useful builtins

• The shell has several built-in programs for
very common tasks.

• echo: prints a line to the screen, you knew
this already.

• printf: does printf(3) style formatting on
text, e.g. printf ‘%02d’ “$tracknumber”

• let: changes variables, e.g. let “x=x+1”
changes $x

Image resizing example
#!/bin/sh

FILE="$1"

if [! -f "$FILE"]; then
 exit 1
fi

ID=$(identify "$FILE" | cut -d' ' -f3)
WIDTH=$(echo "$ID" | cut -dx -f1)
HEIGHT=$(echo "$ID" | cut -dx -f2)
let RATIO=”(WIDTH*100)/HEIGHT”

if ["$RATIO" -eq 133]; then # landscape
 mogrify -scale $2x$3 "$FILE"
elif ["$RATIO" -eq 75]; then # portrait
 mogrify -scale $3x$2 "$FILE"
fi

Final Projects
In lieu of a final exam, this class will feature a final project. The projects will be due on
April 29, when you will present your projects to the class. Ergo, try to pick something
at least marginally interesting.

The fist step in your project is the project proposal, which will be due in HARDCOPY
at the beginning of next lecture (i.e. right after spring break). You will therefore need
to be in contact with your groupmates to come up with a proposal (one per group).
Your proposal should include:

Your group number
Your group member's names
A brief overview of your project (objectives + summary)
The resources necessary for your project (especially if you will need ports opened)
A (rough) timeline for your project

You can see an example of a project proposal on the course website. If you have
questions, or if you need some ideas for a project, email the facilitators for help.

