

UNIX Power Tools

Intermediate System Administration DeCal
Spring 2010

Lecture 5

Today
● Learn to use tools like cut, sed, sort, tr,

and grep to do amazing text manipulation
● Learn how to use regular expressions
● Learn how to use xargs to get over the

limits of command line substitution
● Learn to properly use find

sort(1)
● Does pretty much what it says: Takes

input from stdin or a file and sorts it
ascending alphanumerically by default

● Can sort by many different criteria or by
columns or backwards
sort -k2 a.txt b.txt
ls | sort -r

● Often used in conjunction with uniq(1):
sort classes-taken.txt | uniq

● Uniq needs sorted input; use uniq -u for
unsorted input

tr(1)
● Used to TRanslate characters or classes

of characters in an input stream, or delete
them. Does not work with strings!
tr 'a-z' 'A-Z' names.txt
echo 'Go Bears!' | tr a e

cut(1)
● Splits lines into fields with the delimiter of

your choice
echo “a,b,c” | cut -d, -f1

(returns a)
echo “Jack eats pie” | cut -d ' ' -f3

(returns pie)
echo “Jack eats pie” | cut -d, -f1

(returns Jack eats pie, since there are no
commas)

sed(1)
● Stream EDitor: takes input and spits it

back out with certain modifications
sed 's/D/A+/g' < grades.txt

(Changes all D's to A+'s in grades.txt on
all lines and spits it to stdout)
sed 's/John/Jeff' < roster.txt

(Changes the first instance of John on
each line to Jeff)
sed 's/\([^]+\) your \([^]+\)/\2\1er/g' < insults.txt

(Changes eg. “fail your test” to testfailer in
file insults.txt)

Regular Expressions
● Regular expressions can be used with

grep, sed, pretty much any command line
tool

● A superset of the wildcard system you
learned before (*/?)

● We will go over a few examples briefly, but
you will learn more doing the lab

Regular Expressions
● Match all lines that contain what or What
[wW]hat

● Match all lines that start with x and end
with a number or a lowercase letter
followed by any character
^x.*[0-9a-z].$

● Find all lines that have no whitespace
^\S+$

Regular Expressions
● You can use these expressions in sed for

substitution:
sed s/regex1/regex2

● You can use these expressions in egrep
for matching:
egrep “regex1” < file

● This has been a really brief overview, but
regexes are super powerful

xargs
● Trying “rm *” in a huge directory or

“rm $(<deleteme.txt)” with a huge file will
give “command list too long!”

● Instead:
xargs rm < deleteme.txt
find . | xargs rm -f

● If your files have names with spaces?
find . -print0 | xargs -0 rm -f

find power user
● The find command can do way more than

just find all the files in a directory. It has
predicates!
find -iname “TeSt.TxT” -and -type f
Finds files called test.txt with case
insensitivity
find -not -name “meh” -or -type -d
Finds directories or anything not called
“meh” (case sensitive)

● Consult the manpage for more predicate
goodness.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

