
The Shell

Intermediate System
Administration

Spring 2010

What is the shell?

 A program; your gateway into any Unix
system

 Allows you to inspect, manipulate,
add/remove files and parts of the system

 Allows you to run other programs and control
how they run

 A compact programming environment to
allow automation of many tasks (sort of like
DOS batch files)

In the beginning, there was sh. . .

 sh (what would become the Bourne shell) is the
original shell first developed for UNIX in 1971

 More commonly used today are derivatives of the
Bourne shell (such as bash and ksh) and csh (the C
shell, written by Bill Joy, at the time a masters
student at Cal) and its derivative tcsh

 Most examples in this course will use bash syntax,
but nothing we do will be impossible in any other
shell

Diving in: Basic Commands

 Demonstration of:
 cd - change directory
 ls - list directory
 pwd - print working directory
 mkdir - make (empty) directory
 cp - copy a file
 mv - move/rename a file
 rmdir - remove an empty directory
 rm - remove a file

Looking for Things

 grep: used to search within files for certain
patterns (called regular expressions, or
regexes)

 find: used to find files within a directory
structure

 locate: quick but not necessarily up to date
(indexed roughly every 24 hours)

Working with Files

 cp: used to copy files from one location to
another (think copy/paste)

 mv: used to move a file to another location,
or to rename it (think cut/paste)

 rm: used to delete a file

More Programs

 You will often have to make use of programs
you haven’t seen before

 When you don’t know what a program does
or how to use it, man it!

 man: the single most useful program on your
hard drive. Invoking “man programname” will
show the manual page (i.e.“user manual”) for
that program. The manual page will tell you
the correct syntax and detail command line
options

Wildcards and Questionmarks

 You’ve probably heard of “rm -rf *”, but what
does it do?

 “*” is a special character in the shell. “*”
represents anything

 “ABC*” matches “ABC1” and “ABC42”
 “?” is another special character. “?” matches

any single character
 “ABC?” matches “ABC1” but not “ABC42”

The Unix Paradigm

 Similar to the RISC vs CISC ideology
 Write small programs with small purpose and

chain them together vs writing huge
programs that do just one thing

 The shell makes this chaining possible with
its most important feature: the pipe

Pipes

 Pipes are a way to chain the output of one
command into the input of another

 For example, you can grep the output of ls to find all
the files that match a particular pattern

 Or. . . you can ls the output of grep. Anything goes.
It just won’t do anything if the output of the first
command doesn’t match the input format of the
second

 This is the basic idea behind Automator, LabView,
etc.

Pipe Examples

 Convert all WAV files in a directory to OGG:
 find | grep ‘.wav$’ | xargs oggenc

 Count how many lines a text file has
 cat jonathan.txt | wc -l

 Get the file size of every file in a directory by
using ls verbose options
 ls -l | awk ‘{print $5 $8}’

Output Redirection

 Running programs can relay output to the
screen two ways: via standard output (stdout)
and standard error (stderr)

 The shell lets you control the flow of these
using > and 2>

 Log the output of a program to prog.log and
errors to error.log:
 someprogram >prog.log 2>error.log

Input Redirection

 Many UNIX programs will wait for input from
the “standard input” (stdin); by default stdin is
the keyboard

 We’ve already seen one example of input
redirection (pipes)

 You can also redirect input from a file using
“<“
 frobnicate < foobar.txt

Into the Black Hole

 /dev/null is a special file in UNIX systems
 it contains no data, and ignores anything you

write to it
 to discard the output of a program, redirect it

to /dev/null
 to explicitly pass no input to a program that

expects it, redirect its stdin from /dev/null

Shell Programming

 Many shells support some basic
programming constructs- for, while, if-then,
etc.

 When combined with other shell features,
you can do some pretty complex things with
shell scripts

 We will have a shell scripting lecture later in
the course

Substitution

 Sometimes, you want to substitute the output of one
program into the command line of another

 Alternately, you may want to substitute the contents
of a file

 You can do this with substitution:
 rm $(locate .avi)
 rm $(<files-to-delete.txt)

 Be careful! The output might not be what you expect
and you could delete the wrong thing. . . rm -rf
$(echo /)

