
The Shell

Intermediate System
Administration

Spring 2010

What is the shell?

 A program; your gateway into any Unix
system

 Allows you to inspect, manipulate,
add/remove files and parts of the system

 Allows you to run other programs and control
how they run

 A compact programming environment to
allow automation of many tasks (sort of like
DOS batch files)

In the beginning, there was sh. . .

 sh (what would become the Bourne shell) is the
original shell first developed for UNIX in 1971

 More commonly used today are derivatives of the
Bourne shell (such as bash and ksh) and csh (the C
shell, written by Bill Joy, at the time a masters
student at Cal) and its derivative tcsh

 Most examples in this course will use bash syntax,
but nothing we do will be impossible in any other
shell

Diving in: Basic Commands

 Demonstration of:
 cd - change directory
 ls - list directory
 pwd - print working directory
 mkdir - make (empty) directory
 cp - copy a file
 mv - move/rename a file
 rmdir - remove an empty directory
 rm - remove a file

Looking for Things

 grep: used to search within files for certain
patterns (called regular expressions, or
regexes)

 find: used to find files within a directory
structure

 locate: quick but not necessarily up to date
(indexed roughly every 24 hours)

Working with Files

 cp: used to copy files from one location to
another (think copy/paste)

 mv: used to move a file to another location,
or to rename it (think cut/paste)

 rm: used to delete a file

More Programs

 You will often have to make use of programs
you haven’t seen before

 When you don’t know what a program does
or how to use it, man it!

 man: the single most useful program on your
hard drive. Invoking “man programname” will
show the manual page (i.e.“user manual”) for
that program. The manual page will tell you
the correct syntax and detail command line
options

Wildcards and Questionmarks

 You’ve probably heard of “rm -rf *”, but what
does it do?

 “*” is a special character in the shell. “*”
represents anything

 “ABC*” matches “ABC1” and “ABC42”
 “?” is another special character. “?” matches

any single character
 “ABC?” matches “ABC1” but not “ABC42”

The Unix Paradigm

 Similar to the RISC vs CISC ideology
 Write small programs with small purpose and

chain them together vs writing huge
programs that do just one thing

 The shell makes this chaining possible with
its most important feature: the pipe

Pipes

 Pipes are a way to chain the output of one
command into the input of another

 For example, you can grep the output of ls to find all
the files that match a particular pattern

 Or. . . you can ls the output of grep. Anything goes.
It just won’t do anything if the output of the first
command doesn’t match the input format of the
second

 This is the basic idea behind Automator, LabView,
etc.

Pipe Examples

 Convert all WAV files in a directory to OGG:
 find | grep ‘.wav$’ | xargs oggenc

 Count how many lines a text file has
 cat jonathan.txt | wc -l

 Get the file size of every file in a directory by
using ls verbose options
 ls -l | awk ‘{print $5 $8}’

Output Redirection

 Running programs can relay output to the
screen two ways: via standard output (stdout)
and standard error (stderr)

 The shell lets you control the flow of these
using > and 2>

 Log the output of a program to prog.log and
errors to error.log:
 someprogram >prog.log 2>error.log

Input Redirection

 Many UNIX programs will wait for input from
the “standard input” (stdin); by default stdin is
the keyboard

 We’ve already seen one example of input
redirection (pipes)

 You can also redirect input from a file using
“<“
 frobnicate < foobar.txt

Into the Black Hole

 /dev/null is a special file in UNIX systems
 it contains no data, and ignores anything you

write to it
 to discard the output of a program, redirect it

to /dev/null
 to explicitly pass no input to a program that

expects it, redirect its stdin from /dev/null

Shell Programming

 Many shells support some basic
programming constructs- for, while, if-then,
etc.

 When combined with other shell features,
you can do some pretty complex things with
shell scripts

 We will have a shell scripting lecture later in
the course

Substitution

 Sometimes, you want to substitute the output of one
program into the command line of another

 Alternately, you may want to substitute the contents
of a file

 You can do this with substitution:
 rm $(locate .avi)
 rm $(<files-to-delete.txt)

 Be careful! The output might not be what you expect
and you could delete the wrong thing. . . rm -rf
$(echo /)

