
Compiling Software on
UNIX

System Administration Decal
Spring 2009
Lecture #4
George Wu

Slides prepared by Joshua Kwan

Today

• How to turn source code into
programs that run on Linux?
• What if that software needs other

software to function?
• What if there’s a problem during the

build?
• Set up final project groups and assign

virtual servers

3

Clarifications

• If you’ve had problems doing labs
because of account problems, use
your shiny new virtual server! (later
on)

• Running programs; the $PATH
variable.
– check with “echo $PATH”
– PATH does not include current dir by

default
– to run “foo” from your current directory,

must type “./foo” to tell the shell where it
is.

Types of Software Packages

• Programs – things you can run off the
command line.
• Libraries – software that other source

code can use the functions from.
• Modules – “extension” code written

specifically to work with a certain
program
• Script libraries – code archives in

languages like Python, Perl, Ruby for
various purposes.

The Three-Step Procedure

• Step 0: Download and unpack source
– Generally, using the tar application. e.g.
tar ­xvzf MyProg­1.0.tar.gz
tar ­xvjf MyProg­1.0.tar.bz2

• Step 1: Run ./configure
– Prepares source for building on your particular

system

• Step 2: Run make
– Compiles source files to binaries (if applicable)

• Step 3: Run make install
– Installs programs and data into system

The Three-Step Procedure

• This works in the majority (70-75%) of
cases
• Many other software environments

(e.g. scripting languages) have own
system
• For example..
– Python: python setup.py install
– Perl: perl Makefile.PL; make …

• When in doubt, look for an INSTALL
text file or a README

7

Patching Software

• When released software has issues, a
code patch is released instead of a
new version

• Generally come in the unified diff
format, which the “patch” utility
understands

• You should apply patches before you
build, obviously - hence mentioning
this here.

8

­­­ maildirtree­0.6/maildirtree.c~ 2008­10­07 14:19:42 ­0700
+++ maildirtree­0.6/maildirtree.c 2008­10­07 14:19:48 ­0700
@@ ­103,7 +103,7 @@
 {
 case 'h':
 puts(usage);
­ exits(0);
+ exit(0);

 case 's':
 summary = true;

Patch Example

• Example: patch ­p1 < fix.diff
• ­p1: If fix.diff wants to look for a/b/test.c, actually modify

b/test.c.
­p2: fix.diff looks for a/b/test.c, actually modifies ./test.c

• 99% of patches: Enter the source directory, then use ­p1

What is make?

• Powerful build system! You’ll be using
the “GNU” version of make in this
class
• Lets you specify what to build, how to

build (compiler and arguments), order
to build in
• Includes strong dependency system
• “Don’t build my_program without

having libprogram.a built already”
• “If I update foo.h, rebuild foo.c”

Configuration Options

• Configure script generally has
options; try
./configure ­­help

• You can enable features, point it to
library install paths that it needs, use
different compiler, etc.
• Reacting to a configure/build error

often involves trying to find an option
that will fix things.

Build Problems

• Missing library:
– Download, build and install the needed library

• Missing compiler:
– Install your OS’s compiler distribution (e.g.

Xcode or gcc package on Linux)
– Make sure to install the C development

headers!

• Compilation error:
– Is your operating system supported by the

author?
– You could try and fix it… then submit your

solution to the author!

Dependency Hell

• What if your program depends on
libfoo?
– Download libfoo source and try to build
– libfoo depends on libbar!
– Download libbar source and try to build
–… ad infinitum …

• We call this “Dependency hell”
• Package systems in Linux

distributions or ‘ports’ in BSD-type
distributions can help.

Distribution Package
Systems

• Want to install ‘program’ on Ubuntu?
– Easy! apt­get install program
– ‘program’ and its dependencies will be

installed from binary packages.
– Thus, apt­get install program is

equivalent to apt­get install program
libfoo libbar

• But: You can’t customize; desired
program may not have a package; no
learning involved.
• Not allowed to do this for your final

project 

Final Project

• We’re giving you a virtual Linux
server
• Your goal: combine several pieces of

open source software to make a cool
service.
• Groups of three or four. Find some

partners!
• Your “lab” this week includes setting

up user and administrator access for
all group members.

15

Final Project Ideas

• IRC server and services (NickServ,
ChanServ)

• Open-source game server (bzflag,
OpenArena)

• Multiple OS network boot server (PXE/
DHCP)

• or any number of database-backed
web applications... (using
Apache/MySQL/etc.)

Virtual Servers

• If your server is “iXY”, login by doing:
ssh –p 2XY22 root@decal.ocf.berkeley.edu

• Change your root password
immediately using passwd
• The lab will walk you through getting

everything else set up.
• Talk to me about port forwarding for

any network servers you want to run
for the proj.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

