
System Administration for Beginners

Week 4 Notes

March 12, 2008

1 Lecture

In the previous weeks, we have covered much of the basic groundwork needed
in a UNIX environment. In the upcoming weeks, we will spend time getting
intimately close with making things work. Simply put, we are shifting over to
the administrative side of things as opposed to only using the tools that have
been provided to us.

1.1 Super-Users

Until now, you have been working with regular user accounts on the instructional
and OCF servers. Beginning this week, each project group will be granted an
administrator account on their own private virtual server. These administrator
accounts are called super-user accounts as they have more privileges compared
to regular user accounts.

On most UNIX system, the most powerful super-user account is called root.
A user with root access can do practically anything on a system; thus it is
important to take great care when performing tasks as a root user. As said
earlier, UNIX will not yell at you or provide any warnings if you tell it to do
something stupid. For this reason, system administrators tend to create normal
user accounts for themselves, and switch to root only when necessary.

The following is a simple list of tasks that root can do. This list is only a
sampling of the changes that root can make and is by no means limited:

• change the password for any user

• create and delete user accounts

• read, write, or execute any file on the system

• change the permissions for any file or directory on the system

• install software globally

• reboot or shutdown the system

1



1.2 UNIX Filesystem Layout

With root access, you will be able to manipulate files outside your home direc-
tory. Therefore, it is important to have a general idea of where files are stored
on UNIX-based operating systems.

Like most other operating systems, UNIX uses a hierarchical directory struc-
ture. Each mounted filesystem has a root, or top level, directory which contains
files and sub directories. On Windows, for example, each filesystem mounted
on the system is assigned its own drive letter (like C:, D:) and the filesystem is
mounted under it.

UNIX handles filesystem mounts in a different fashion. Everything, if you
haven’t noticed, is accessed under a single filesystem, with individual filesystems
mounted at mount points. These mount points are directories or files that are in
the main file system where you attach the root directory of another filesystem.
Let us now take a look at its directory structure, based on the convention known
as the Filesystem Hierarchy Standard.

/bin Binaries, or programs, which are accessible by all users are located here.
Most of the commands entered without specifying a path are located in a
bin directory.

/sbin System binaries are programs used for maintenance or administrative
tasks. They are generally accessible by super-users because many of these
binaries have the capabilities to make changes on a system-wide level

/home Each user’s home directory is stored here. Each user gets their own
personal directory to store individual data and user-specific settings.

/usr Known as User Shareable, this is a secondary hierarchy similar to the root
directory. It contains many similar subdirectories like the root directory,
but most of its contents are not as essential to system operations.

/dev This directory contains the links to all the devices connected to your
system. The UNIX-filesystem treats devices as files and are located here.

/var Variable data is stored here. Important things like print jobs and system
logs can be found in specific subdirectories.

/tmp This temporary spot is useable by any user. Since it is temporary, the
data stored here can be cleaned out and lost at any time, so it is important
that nothing you want to save is kept in this directory.

/boot The data stored in this directory is used for booting the system. Kernel
images and boot loader configuration (e.g., GRUB or LILO) is found here.

/proc A virtual filesystem is mounted here, containing information about sys-
tem hardware and running processes.

/etc This is where all the system configuration files are stored.

/root Not standard, but generally the home directory for root.

2



1.3 Server Daemons

Last week, we described a model of the Internet that was composed of three
layers. The topmost one, the application layer, refers to various languages spo-
ken on the Internet (e.g., HTTP, FTP, BitTorrent, etc). These languages are
often used by applications called server daemons.

Server daemons are programs that run on a server and wait for something
to happen (in UNIX this is called a background process). Generally, these
“somethings” are requests for or to transmit information. For example, a web
server is a daemon that waits for someone to visit the website it is hosting (a
request for information). Other server daemons, such as email servers, usually
wait for a request to transmit information.

To communicate over the Internet, server daemons listen for requests on
ports. A port is like a special door on a server that is accessible to the Internet,
and each server daemon gets their own door. Ports are numbered 1 through
65535 and there is an agency that establishes a standard set of ports server
daemons should use. However, system administrators are under no obligation
to use these standard ports.

1.4 How to Get Server Daemons

In the UNIX world, the most popualr server daemons are the product of open-
source projects that provide their software for free. Apache, MySQL, and Postfix
are examples of very popular web, database, and email servers, respectively, that
are completely free to obtain, use, and customize.

To obtain a server daemon, you go to the website for that server project and
download the software. Most popular server daemons are available for a variety
of computer platforms (e.g., UNIX, Windows, Mac OS X).

Server daemons for Microsoft Windows platforms are generally distributed
as compiled executables, while server daemons for UNIX-based platforms are
generally distributed as source code packages. Source code is the program code
that defines a program; you have to compile the source code to use the pro-
gram. The reason why server daemons are distributed as source code packages
for UNIX-based platforms is because there are so many different types of UNIX
that it would be impractical to provid pre-compiled binaries for all the avail-
able UNIX versions. Of course, you will probably be able to find pre-compiled
binraies for popular versions of UNIX, but don’t be surprised if you don’t.

The source code is generally distributed as a compressed tar archive (com-
monly referred to as tarballs), so you will need to uncompress the archive and
extract it.

1.5 ./configure, make, make install

In most cases, extracting the tar archive for a server daemon will create a
directory with the name of the server daemon and the version you downloaded.
Chagning into this directory, you will normally find files named either README or

3



INSTALL that describe how to compile and install the software. It is a good idea
to read these files before compiling and installing the package to make sure that
you’ve configured any system-specific settings that your server may require.

Commonly, UNIX software is compiled and installed using three commands.
The first command, ./configure, customzies the source code for your UNIX
version and allows you to specify and special configuration parameters that you
may need. The second, make, actually compiles the program code. The last
command, make install, installs the software into the UNIX file system.

./configure also takes parameters that allow you to customize the software.
For example, you might want to disable certain features for performance or
security reasons. Another reason to pass a parameter to ./configure is to
change the default installation directory using the --prefix parameter.

Some server daemons require additional installation steps, so be sure to read
the README or INSTALL files if available (if they’re not, check the place where
you got the software for documentation).

1.6 Configuration

After compiling and installing a server daemon, you need to configure it before
you can use it. Most server daemons read their configuration from a plaintext
configuration file with various directives. For example, Apache 1.3 reads a file
named httpd.conf that specifies the websites it should host. Under Apache 2,
the configuration can be found in a file named apache2.conf.

With respect to configuration files, there are two camps of server daemons:
those who include ready-to-use configuration files and those who believe that
administrators should first become familiar with a piece of software by writing a
configuration file from scratch. Regardless of which you choose, it is important
to read through a server daemon’s documentation prior to deploying it even
if you have a ready-to-use configuration file. Failure to read through a server
daemon’s documentation is often the reason for security breaches.

2 Final Project Overview

For the final project, you will be setting up a production-quality web server
running multiple server daemons (web, database, FTP) and with support for
common web programming languages. You will also secure the server, set up
some tools to automate system administration, and set up some form of backup.

As a test of your work, you will create some sample user accounts and load
them with popular web software. At the moment, the final project specifications
have not been finished, but this semester I am thinking of having a small list
of feature sets that can be implemented on a server and it is up to you to
implement them.

You will be using the same private virtual server for the final project. The
week before the final project is assigned, we will reset your virtual servers. Make

4



note of anything you learn sinace all your changes will be wiped out for the final
project.

5


