
System Administration Decal
Intermediate Lab #2

March 6, 2008

Introduction
 This week, we broadly covered how a Unix filesystem is organized, and how

there are many other different types of files than just normal files and directories. We

poked around on a Linux system and found many interesting files. Finally, we also talked

about how file extensions don’t matter in the Unix world, at least not as much as they do

on Windows. Since this isn’t too fascinating, the subtheme of the following exercises is

to prepare you for next week’s lecture on file permissions, owners, and groups.

 Please send your responses to joshk.decal@triplehelix.org and remember to

include your cs198-XX username. If you have questions, don’t forget to come to my

office hours from 3-4P on Tuesdays at the OCF Lab.

I. Filesystems upon Filesystems
 One thing that is special about Unix is that the filesystem is device agnostic. This

means that you can browse through the filesystem, and /home could be on one hard drive

while /boot is on another. Contrast this to Windows where different drives have

completely isolated filesystems, differentiated by drive letters. Here, we’ll take a look at

this concept of mounting other filesystems on top of your root filesystem in Unix.

 First, log in to a Linux machine at the OCF. (You do have an OCF account right?)

You can see a list of Linux machines at the OCF at http://www.ocf.berkeley.edu/cgi-

bin/ruptime2.pl. Linux machines are the “AMD Athlon” ones. Just append

“.ocf.berkeley.edu” to the name of the machine you want to use and use SSH to connect.

1. Run df –h at the command line. What does this command do? What can you

say about where your home directory is stored? Is it on the machine you’re logged

into? If not, where is it?

2. How can you tell whether a particular mount is a network share or available from

a hard drive connected to the computer? Feel free to guess.

3. Observe the entries that begin with “/stage” and look at the “Disk Used” / “Disk

Available” output. What is strange about this?

4. What you saw in #3 are bind mounts. Look this up on Google and describe what

they are in a sentence or two. How can you tell just by looking if a mount entry in

df –h is a bind mount?

II. The /proc Filesystem
 A notable filesystem amongst those that are mounted on top of your root

filesystem is the /proc filesystem. This is a special filesystem that is provided by the

kernel that doesn’t actually use any disk space – it is all in memory. Its purpose is to

provide information about processes and allow you to twiddle some internal knobs within

the kernel.

 The proc(5) manpage on a Linux box can assist you throughout this problem.

1. Use the ps command to find a process that you own. Try to look it up in /proc

and describe what it tells you about that process.

2. Use the ps command with an argument that lets you see other people’s processes

(what is it?) Choose a process that is not yours and try to examine it in /proc.

What happens?

3. Use the output of ls –l in /proc to explain your answer for #2 more clearly.

(Hint: The two username-looking entries in the output of ls –l represent who

owns the file, and which group co-owns the file, respectively. To the left of that is

the permission listing for the file, representing whether users, groups, or anyone

else can read, write or execute the file. If this isn’t clear, don’t worry about it. We

will go over it in detail next week.)

4. What is /proc/kcore? What happens when you read it? Do you think it’s a

good idea for the behavior to be this way? Why or why not?

5. Check out /proc/net/dev. Try to understand the table it provides – you may

need to widen your terminal window to view it correctly. Find a way to use the

watch command (look it up!) to provide a running update of its output.

6. /proc/self is really special. What does it do? How does it accomplish its

task? Again, use ls –l to examine it.

III. Device Files – The /dev Directory
 Now we’ll take a brief look at device files, which are all located in /dev. Have

http://www.lanana.org/docs/device-list/devices.txt open in a browser window for this

exercise.

1. Look through /dev and find a way to redirect the output of a process to standard

error using a file in /dev.

2. Check out the /dev/zero and /dev/full files. How are these similar to /dev/null?

(It’s not because “full” is only one letter away from “null”.)

3. Use df –h to figure out the root partition for the machine you’re on. Try cating

it. Why can’t you do it, and why is it good that you (as a normal user) can’t?

4. Use ls –l to look through /dev. Why aren’t there any file sizes present? What

replaces them in the output of ls? (Hint: Research the mknod command.)

You’re done!

