

Advanced Unix System
Administration

Lecture 7
March 5, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Resource Limits

● The ulimit facility con't
– Linux/BSD limits

● user's total number of processes (RLIMIT_NPROC)
● physical memory used (RLIMIT_RSS)
● locked memory (RLIMIT_MEMLOCK)

– Setting limits
● Processes can call setrlimit(2)
● Use shell's ulimit from a shell script before running

an application
● PAM modules, etc. to set up limits for a user's login

session

Startup and Shutdown

● Bootloader
– Highly architecture-dependent behavior

● Kernel
– Need to get enough loaded to find root

partition, mount it, and launch userspace
– Traditional fully monolithic kernels load all

their code here

● init
– Mounts filesystems, launches daemons, and

brings up the system

Startup and Shutdown

● init(8)
– PID 1, the “ultimate parent”
– Spawns and respawns various children,

according to configuration
– Two traditional varieties: System V, BSD

● System V init binary
– Used on Linux, Solaris, most commercial Unix
– Configured via /etc/inittab
– Uses “runlevels” to define the stages of boot

and what should be running

Startup and Shutdown

● System V style runlevel handling
– Usually performs actions when changing

runlevels based on the contents of /etc/rcN.d,
where N is the new runlevel

● Scripts starting with S are run with argument
“start”, scripts starting with K are run with
argument “stop”

● Two-digit number following S or K gives the
ordering

– Runlevel S is notionally invoked at the
beginning of startup, 0 and 6 at halt or reboot

Startup and Shutdown

● BSD init binary
– Used primarily on the BSDs
– Launches a script /etc/rc when invoked, then

spawns and respawns programs based on the
contents of /etc/ttys

– /etc/rc.shutdown is run on shutdown

● BSD style init handling
– Only used by OpenBSD nowadays
– /etc/rc and /etc/rc.shutdown do most/all of

the work themselves

Startup and Shutdown

● Comparing BSD and SysV init handling
– BSD-style init handling is simple and

straightforward, but difficult to modify
automatically

– SysV init has more flexibility and modularity
– With appropriate configuration of /etc/inittab

or /etc/rc, SysV init binaries can be
configured to behave BSD style (i.e.
Slackware) and vice versa – or could behave
entirely differently from either

