

Advanced Unix System
Administration

Lecture 6
March 3, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

The Unix Permissions Model

● POSIX draft ACLs
– Allow the addition of extra user and group

permissions entries
– A “mask” is set on each file and is ANDed

with each ACL entry to determine effective
permissions

● NFSv4 ACLs
– Provide very granular (and different!)

permissions based on a linear allow/deny list
– More flexible, more difficult to deal with
– Has some compatibility issues (umask, ...)

Impersonating Others

● SUID/SGID execution
– The changing ID dance

● The real user/group IDs are inherited from the
parent process

● The effective user and/or group IDs are set to the
owner/group of the binary, if the corresponding bit
is set

● The saved set-user/group-IDs are set to the
effective user and group IDs

– The “nosuid” or “nosetuid” attribute on the
filesystem prevents changing IDs based on
the suid/gid bits

Impersonating Others

● Changing IDs while running
– Unprivileged programs may change their

effective IDs to their real IDs or their saved
set-IDs

● SUSv3 does not specify whether real IDs may be
changed

– Privileged programs may change any of their
IDs to anything

● How to change a particular ID can be quite system-
dependent!

● Keeping track of which IDs are set to what is
important for security

Impersonating Others

● Changing IDs while running con't
– Becoming someone else temporarily

● Change your effective ID to what you need (if
unprivileged, can only be real ID or saved set-ID),
using seteuid()/setegid()

● When done, can change ID back to saved set-ID

– Dropping privileges
● Must change real, effective, AND saved set-IDs to

new values, so that process cannot regain
privileges!

● setuid()/setgid() do this for privileged processes
ONLY; unspecified whether setreuid()/setregid() do

Resource Limits

● Why? See your homework!
● The ulimit facility

– Sets per-process limits on use of certain
resources

– Two types of limits
● Soft limit: the limit actually enforced by the kernel

at any one moment
● Hard limit: the maximum value a process is

permitted to raise its soft limit to
– Any process can lower hard limit, only root can raise

them

– Children inherit parents' limits

Resource Limits

● The ulimit facility con't
– POSIX-defined limits

● coredump size (RLIMIT_CORE)
● total CPU time used (RLIMIT_CPU)
● data segment size (RLIMIT_DATA)
● file size (RLIMIT_FSIZE)
● open file descriptors (RLIMIT_NOFILE)
● initial stack size (RLIMIT_STACK)
● virtual memory used (RLIMIT_AS)

– The POSIX-defined limits are notoriously odd
and difficult to use effectively

