Advanced Unix System Administration

Lecture 6 March 3, 2008

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

The Unix Permissions Model

- POSIX draft ACLs
 - Allow the addition of extra user and group permissions entries
 - A "mask" is set on each file and is ANDed with each ACL entry to determine effective permissions
- NFSv4 ACLs
 - Provide very granular (and different!)
 permissions based on a linear allow/deny list
 - More flexible, more difficult to deal with
 - Has some compatibility issues (umask, ...)

Impersonating Others

- SUID/SGID execution
 - The changing ID dance
 - The real user/group IDs are inherited from the parent process
 - The effective user and/or group IDs are set to the owner/group of the binary, if the corresponding bit is set
 - The saved set-user/group-IDs are set to the effective user and group IDs
 - The "nosuid" or "nosetuid" attribute on the filesystem prevents changing IDs based on the suid/gid bits

Impersonating Others

- Changing IDs while running
 - Unprivileged programs may change their effective IDs to their real IDs or their saved set-IDs
 - SUSv3 does not specify whether real IDs may be changed
 - Privileged programs may change any of their IDs to anything
 - How to change a particular ID can be quite systemdependent!
 - Keeping track of which IDs are set to what is important for security

Impersonating Others

- Changing IDs while running con't
 - Becoming someone else temporarily
 - Change your effective ID to what you need (if unprivileged, can only be real ID or saved set-ID), using seteuid()/setegid()
 - When done, can change ID back to saved set-ID
 - Dropping privileges
 - Must change real, effective, AND saved set-IDs to new values, so that process cannot regain privileges!
 - setuid()/setgid() do this for privileged processes ONLY; unspecified whether setreuid()/setregid() do

Resource Limits

- Why? See your homework!
- The ulimit facility
 - Sets per-process limits on use of certain resources
 - Two types of limits
 - Soft limit: the limit actually enforced by the kernel at any one moment
 - Hard limit: the maximum value a process is permitted to raise its soft limit to
 - Any process can lower hard limit, only root can raise them
 - Children inherit parents' limits

Resource Limits

- The ulimit facility con't
 - POSIX-defined limits
 - coredump size (RLIMIT_CORE)
 - total CPU time used (RLIMIT_CPU)
 - data segment size (RLIMIT_DATA)
 - file size (RLIMIT_FSIZE)
 - open file descriptors (RLIMIT_NOFILE)
 - initial stack size (RLIMIT_STACK)
 - virtual memory used (RLIMIT_AS)
 - The POSIX-defined limits are notoriously odd and difficult to use effectively