Advanced Unix System
Administration

Lecture 4
February 25, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>



Memory Management

« Memory use from user space

- Each process sees its own private virtual
address space

- Code is mapped into memory from disk

- A few pages are mapped for local storage as
the stack — this grows as needed

- Process can explicitly request memory from
the heap using malloc() — though this can be
lazy!

- Files can be mapped into memory using
mmap()



Memory Management

« Efficient VM operation

- Kernel must keep track of many things about
pages:

* Which bits of disk and RAM correspond to an
address

* Whether the disk and RAM are in sync (dirty bit)

* Purpose of the allocation (data, code, mmap file,
cache)

- |deally, the stuff that's in use and/or used
most often should stay in RAM even when
memory pressure strikes



Memory Management

« Efficient VM operation con't

- Without prescience, figuring out what's going
to be used next is a difficult art

- Getting it wrong is a very large performance
penalty

- Lots of different algorithms for doing this:
FIFO, random, NRU, LRU, NFU, aging;
performance varies by application

- All of the generally useful ones need to keep
track of when pages are used



Memory Management

 Fragmentation

- Kernel's keeping track of lots and lots of stuff
per page, so the fewer pages the better

- Keeping large allocations together means
less work for the kernel and faster allocations

- Some applications (i.e. DBs) actually need
contiguous blocks of physical memory

- Various strategies for keeping memory
allocations together



Memory Management

 Large pages
- Bigger pages means fewer pages, of course

- Advantage: less overhead for large
allocations, ensure contiguous physical
memory

- Disadvantages: difficult to allocate in
presence of fragmentation and/or memory
pressure, reduces flexibility

- Not fully supported by all OSes



Input and Output

e Files

- The file is (in principle) the fundamental
abstraction behind Unix I/O

 “Everything is a file” — the famous Unix mantra
that's maybe true

- As far as user-space programs are
concerned, a “file” should be a stream of
data which can be read from and written to

« Could be a file on disk, a network socket, a device,
etc.

* Whether the file is opened via a filesystem is
another story



Input and Output

« Synchronous 1I/O

- At simplest: process makes syscall to I/O
facility, kernel does 1/0O, returns

- This is what read(), write(), and friends do

- Because we treat network sockets and
various other things as files, they can be
handled in a similar way

- This model has some inefficiencies — context
switches, copies, and blocked processes



Input and Output

« Asynchronous 1/O

- Allows the process to do something else
while I/O Is running

- Different ways of doing this: don't bother
notifying the process, polling, event loop,
sighals/callbacks

« Memory-mapped I/O

- Processes and kernel arrange to read/write
from memory in orderly fashion

- Fundamentally async



Input and Output

 1/O scheduling

- When multiple requests to a particular |I/O
source come, we should try to arrange them
efficiently

« Simple first in, first out model works fine for
networks — not so well for rotational disk media

* On rotational disks, try to arrange requests so that
reads and writes are near each other on the platter

 When multiple devices are concerned, take into
account which device data is on

- If we're going to schedule, we might as well
do priority scheduling too ...



Input and Output

* Filesystems

- At the core, a FS is just a way of collecting
files efficiently

- Construction: usually laid out as blocks of
various types

- Directories contain pointers to other
directories and inodes

- Inodes store filenames, metadata
(permissions, ACLs, timestamps), and
pointers to the actual data blocks



Input and Output

 POSIX filesystems

- Unix filesystems traditionally make various
guarantees - I.e. creating links will be atomic

- This means that applications make
assumptions about the way they operate on
files (example: the standard way of safely
replacing a file — especially a binary — while in
use)

- NFS breaks quite a few of these assumptions
— hence random tricks and workarounds



