

Advanced Unix System
Administration

Lecture 4
February 25, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Memory Management

● Memory use from user space
– Each process sees its own private virtual

address space
– Code is mapped into memory from disk
– A few pages are mapped for local storage as

the stack – this grows as needed
– Process can explicitly request memory from

the heap using malloc() – though this can be
lazy!

– Files can be mapped into memory using
mmap()

Memory Management

● Efficient VM operation
– Kernel must keep track of many things about

pages:
● Which bits of disk and RAM correspond to an

address
● Whether the disk and RAM are in sync (dirty bit)
● Purpose of the allocation (data, code, mmap file,

cache)

– Ideally, the stuff that's in use and/or used
most often should stay in RAM even when
memory pressure strikes

Memory Management

● Efficient VM operation con't
– Without prescience, figuring out what's going

to be used next is a difficult art
– Getting it wrong is a very large performance

penalty
– Lots of different algorithms for doing this:

FIFO, random, NRU, LRU, NFU, aging;
performance varies by application

– All of the generally useful ones need to keep
track of when pages are used

Memory Management

● Fragmentation
– Kernel's keeping track of lots and lots of stuff

per page, so the fewer pages the better
– Keeping large allocations together means

less work for the kernel and faster allocations
– Some applications (i.e. DBs) actually need

contiguous blocks of physical memory
– Various strategies for keeping memory

allocations together

Memory Management

● Large pages
– Bigger pages means fewer pages, of course
– Advantage: less overhead for large

allocations, ensure contiguous physical
memory

– Disadvantages: difficult to allocate in
presence of fragmentation and/or memory
pressure, reduces flexibility

– Not fully supported by all OSes

Input and Output

● Files
– The file is (in principle) the fundamental

abstraction behind Unix I/O
● “Everything is a file” – the famous Unix mantra

that's maybe true

– As far as user-space programs are
concerned, a “file” should be a stream of
data which can be read from and written to

● Could be a file on disk, a network socket, a device,
etc.

● Whether the file is opened via a filesystem is
another story

Input and Output

● Synchronous I/O
– At simplest: process makes syscall to I/O

facility, kernel does I/O, returns
– This is what read(), write(), and friends do
– Because we treat network sockets and

various other things as files, they can be
handled in a similar way

– This model has some inefficiencies – context
switches, copies, and blocked processes

Input and Output

● Asynchronous I/O
– Allows the process to do something else

while I/O is running
– Different ways of doing this: don't bother

notifying the process, polling, event loop,
signals/callbacks

● Memory-mapped I/O
– Processes and kernel arrange to read/write

from memory in orderly fashion
– Fundamentally async

Input and Output

● I/O scheduling
– When multiple requests to a particular I/O

source come, we should try to arrange them
efficiently

● Simple first in, first out model works fine for
networks – not so well for rotational disk media

● On rotational disks, try to arrange requests so that
reads and writes are near each other on the platter

● When multiple devices are concerned, take into
account which device data is on

– If we're going to schedule, we might as well
do priority scheduling too ...

Input and Output

● Filesystems
– At the core, a FS is just a way of collecting

files efficiently
– Construction: usually laid out as blocks of

various types
– Directories contain pointers to other

directories and inodes
– inodes store filenames, metadata

(permissions, ACLs, timestamps), and
pointers to the actual data blocks

Input and Output

● POSIX filesystems
– Unix filesystems traditionally make various

guarantees – i.e. creating links will be atomic
– This means that applications make

assumptions about the way they operate on
files (example: the standard way of safely
replacing a file – especially a binary – while in
use)

– NFS breaks quite a few of these assumptions
– hence random tricks and workarounds

