

Advanced Unix System
Administration

Lecture 16
April 16, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Principles of Security

● Know what you're securing!
– Without an idea of what you need to protect,

you're not going to get very far
– Know what the system needs to do and what

the threats against it are

● Security is a process, not a product
– Can't just put together a good design and

rubber-stamp it “secure” – threats evolve
– Reassess your system's security periodically

Principles of Security

● Keep your users in mind
– You're doing yourself no good if you make a

system so draconian your users look for ways
to bypass it

● If ultra-long passwords = sticky notes on monitor,
you might want to look into other solutions

– Work with your users to determine what
they're willing to put up with, and design
systems that are useful for them

● This might require some creative thinking

Principles of Security

● Minimize your attack surface
– The notional “attack surface” consists of all

the possible points of attack on the system
– By reducing this, you make the attacker's job

more difficult – and more importantly, make
your job easier

● Implement multiple layers of security
– Force the attacker to figure out more
– Give yourself a better chance of detecting

intrusions

Principles of Security

● Compartmentalize
– Creates smaller, simpler parts that are easier

to understand and maintain
– Limits the scope of a compromise of one

component (provided you follow other
recommendations)

● Minimize privilege
– Give each component and user only as many

rights it needs, no more
– Reduce the impact of a compromise

Principles of Security

● Assume the rest of the world is hostile
– Input could come from malicious users or

compromised components
– Environment can be manipulated by

attackers

● Implement monitoring and accountability
– Allows you to identify a break-in or flaws

before they become major problems
– Allows you to track down who/what was

responsible

Principles of Security

● The cost-benefit tradeoff
– There is such a thing as too much security

● If your security measures cost more than the cost
of recovering from a compromise, you have too
much security

– Consider your need for security and the cost
of your measures before you start locking
down your system

Classifying Vulnerabilities

● Two standard measures of classification
– Where an attacker needs to be: “local

system”, “local network”, “remote”
– What the attacker can do: “denial of service”,

“information disclosure”, “information
modification”, “privilege escalation”,
“arbitrary code execution”, “system access”

– Note that the standard classifications usually
relate to default configurations – which may
not apply on your system

Types of Attacks

● The buffer overflow
– Many programs use fixed-size buffers to store

strings
– Where string lengths aren't handled

correctly, the attacker may be able to write
to other memory

– Could lead to a crash – or to more subtle
bugs

● What is possible is controlled by the memory layout

Types of Attacks

● Integer overflow
– Integers aren't arbitrary-precision like they

are in the abstract!
– Not accounting for the wraparound behavior

of a variable can lead to nasty bugs
– Problem compounded by differing behaviors

of signed and unsigned variables

Types of Attacks

● Other memory bugs
– Use after free(): if the attacker can control

what's in that memory afterwards, could lead
to nasty security problems

– Double free()
– Format string vulnerability (C, C++

programs)
● User control of the format string allows nasty

memory-based attacks

– With sufficient effort, many (most?) memory
use bugs can be exploitable

Types of Attacks

● Temporary file vulnerabilities
– On most systems, anyone can write to /tmp
– Imagine the following sequence:

● Attacker creates symlink /tmp/foo -> file
● Program does open(“/tmp/foo”, O_WRONLY|

O_CREAT|O_TRUNC)

– Any time temp file names are predictable,
there's a problem

● Even when the name does change, there is a race
condition

