

Advanced Unix System
Administration

Lecture 13
April 7, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

The Transport Layer

● Transmission Control Protocol (TCP)
– Much more elaborate and featureful than

UDP
– Reliable, stream-oriented, connection-

oriented
– Applications send streams of data which TCP

packages into packets and sends over the
network

– Correct and in-order delivery is guaranteed
even on unreliable networks

The Transport Layer

● The TCP packet
– Source port (16 bits), destination port (16

bits)
– Sequence number (32 bits)
– Acknowledgment number (32 bits)
– Data offset (4 bits), gives size of header in

32-bit words, reserved field (4 bits)
– TCP flags (8 bits): CWR, ECE, URG, ACK, PSH,

RST, SYN, FIN
– Window size (16 bits), gives number of bytes

sender is willing to receive before ACK

The Transport Layer

● The TCP packet con't
– Checksum (16 bits)
– Urgent pointer (16 bits)
– Options, padded to an integral multiple of 32

bits
– Data

● TCP connections
– Three phases of connections: establishment,

data transfer, teardown

The Transport Layer

● TCP connections con't
– Establishment (3-way handshake):

● Client sends packet with SYN set to server
● Server replies with SYN/ACK
● Client sends ACK
● Unexpected/unwanted connections rejected with

RST

– Data transfer
● The sequence number of the packets with SYN set

give initial sequence numbers (ISNs)
● Each byte of data in the stream is given a

sequence number, starting with ISN+1

The Transport Layer

● TCP connections con't
– Data transfer con't

● Receipt of each packet is acknowledged with an
ACK with ack number set to the last byte in
sequence received + 1

– Selective packet acknowledgment is available as an
option

● Packets not acknowledged will be retransmitted;
duplicates will be dropped silently

● Number of bytes a sender will send before waiting
for ACK is controlled by the window size

The Transport Layer

● TCP connections con't
– Data transfer con't

● TCP implementations use data such as
retransmissions, ACK rates, and the like to adjust
to conditions (via changing the window, slowing
transmission rate, etc.)

– Teardown
● FIN is sent to announce that one has no more data

to send
● That half of the connection is closed when the ACK

reply is received

The Transport Layer

● Application considerations
– For short communications that may happen

frequently/quickly, UDP is used
– Longer conversations, anything that needs to

happen reliably, etc. should be done over TCP
– Stream connections that can't take the

overhead or connection handling of TCP may
use UDP, but this requires careful application
design

– By volume, TCP traffic dominates on the
Internet

Packet Filtering and Firewalls

● At the simplest level, this is really easy to
do
– Hooks into parts of the network stack to

examine attributes of packets
– Decision to drop or allow through packet

based on some simple matching rules
– The lower the level you confine your

examination to, the faster it'll be
● This gives you less information, of course
● Good filtering is a tradeoff between speed and

flexibility

Packet Filtering and Firewalls

● State
– Stateless packet filtering can't give you

information about TCP connections
– Having the firewall engine keep connection

state allows real filtering of incoming
connections

– Once you're keeping state, other statistics
such as connection rate can also be useful

– Speed can be a problem – but you can also
use state to speed up packet processing

Packet Filtering and Firewalls

● Packet mangling
– It's not a long step towards actually changing

the packets based on matched rules
– Depending on where the hooks are, one can

change the destination of the packet, its
attributes, ...

● Notable implementations
– netfilter (Linux), pf (OpenBSD and other

BSD), ipfilter (portable) are quite flexible
– Most Windows firewalls are simpler packet

filters

