

Advanced Unix System
Administration

Lecture 10
March 17, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Remarks on Performance

● The generic performance curve:

Requests
handled

Resources available

Remarks on Performance

● It's not worth optimizing one particular
thing past the point when it's not the
bottleneck anymore

● Hence your job is usually to identify the
bottleneck, widen it, and repeat until
satisfied with performance

● Performance tuning requires
instrumentation, understanding, a bit of
thought, and patience

Remarks on Performance

● Hardware effects
– Choosing the right hardware can have a

profound impact on performance
– Components have different effects on

performance

● More/faster CPUs
– Linear scaling up to the concurrency

limit/CPU processing limit of the application
– Helps the tail in the limit of very high load

Remarks on Performance

● More memory
– Can improve concurrency, extends the peak

performance of the system by allowing more
cache

– Helps the tail in the limit of very high load

● Faster disks
– Increases initial performance, overload

performance by speeding up cache misses

● Faster network
– Allows more connections, more data pushed

Remarks on Performance

● Performance tuning is always ultimately a
tradeoff
– Increasing one setting (i.e. concurrent

processes) may come at the detriment of
other performance attributes

– What's best depends heavily on the
workload, the resources of your system, and
the bottlenecks that the system is
encountering

Remarks on Performance

● Identifying performance bottlenecks
– Basic instrumentation tools

● System instrumentation (top, vmstat, iostat, etc.)
can show you what subsystems and processes are
most busy

● Tracing can uncover high numbers of calls to one
syscall/library function

● strace and truss support displaying time spent
information

Remarks on Performance

● Identifying performance bottlenecks
– Profiling

● gprof – allows you to show which functions a
program is spending most of its time in

– requires recompile and code knowledge
● OProfile (Linux) – uses performance counting

hardware to show which functions and syscalls take
most time

● These techniques may require a bit of digging into
the code you're profiling – try simpler ideas first!

Networking Intro

● The OSI model
– Seven layers that conceptually separate the

different functions of a network stack very
cleanly

– No practical modern network stacks actually
implement the full separation model

● Physical layer (layer 1)
– Specifies the actual communications

hardware
– Fiber, copper twisted pairs, wireless, SCSI . . .

Networking Intro

● Data link layer (layer 2)
– Specifies details of over-the-wire

communication and error correction between
physical hosts

– We'll focus on Ethernet in this class

● Network layer (layer 3)
– Routes traffic from Point A to Point B,

possibly with QoS considerations
– IP is the only important example nowadays

Networking Intro

● Transport layer (layer 4)
– Provides facilities for a link between hosts,

such as flow control, error correction
– TCP and UDP are the most important

● Session layer (layer 5)
– Provides the link between hosts (connections,

ports, state)
– TCP performs the functions of the session

layer; applications running on UDP must
provide their own session facilities

Networking Intro

● Presentation layer (layer 6)
– Data representation for the application
– Almost always performed by the application

nowadays; protocols are usually considered
part of layer 6

– We'll cover some important examples

● Application layer (layer 7)
– Provides a useful service to users
– The application implementing a protocol is in

layer 7

