

Advanced Unix System
Administration

Lecture 1
February 11, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Administrative Stuff

● CCN: 26229 (lower div), 26231 (upper
div)
– Make sure you're in the right section, for the

right number of units!
– If waitlisted for CS 98, and are a junior/senior,

take CS 198 instead

● Office hours: Tu 11-12:30, W 4-5, by
appointment

Administrative Stuff

● Grading: 20% HW (P/NP), 30% midterm
project, 50% final project
– Final project a chance to “get creative” and

build something that you're interested in

● Prerequisites
– “Prior system administration” doesn't need to

mean more than having set up and played
with your own Linux/BSD box for a bit

– You do need to be able to read
documentation

Course Outline

● Tentative only – probably need to trim
● OS stuff – 5 weeks

– Aiming for a practical perspective

● Networking – 2.5 weeks
– A tour of a TCP/IP stack from bottom to top

● Security – 2.5 weeks
● Final project and additional topics

– What do you want to hear?

Kernel Space, User Space

● Kernel
– The component at the core of the OS
– First part of the OS to load
– Provides central services – process

management, memory management, etc.
– Runs privileged on the CPU
– Usually also provides device drivers, network

stack, and other hardware-related or
performance-critical functions

Kernel Space, User Space

● User space
– Most applications and services run in user

space
– Some core parts of the OS (init, hardware

detection, etc.) do run in user space, usually
with kernel cooperation

– Runs unprivileged on the hardware to provide
better isolation and fault tolerance

Kernel Space, User Space

● Communication between kernel and user
space
– Kernel exposes functions to userspace via

syscalls
– Invoked via an interrupt or via special

processor support
– Requires a context switch, which is slow
– Other mechanisms such as shared memory
– What about /proc? read() is a syscall too!

Kernel Space, User Space

● Microkernels
– Not that much stuff absolutely has to run in

kernel space
– Advantages to keeping code out of kernel:

easier development, more flexibility, security
– Disadvantages: more overhead and more

abstraction = slower code
– Distinction between microkernels and

traditional “monolithic” kernels is blurring

