
Advanced Unix System Administration

Spring 2008

Homework 3 Solutions

1. Networking on paper. Here’s an exercise to test your understanding of TCP/IP over
Ethernet.

a. Your company needs five different networks, four small networks of about 20
servers each, and a larger network of clients with addresses assigned by DHCP.
You have the IP address range 172.17.42.0/24 to work with (I know this is
RFC 1918 space – it’s an example). Suggest a way to divide up this netblock
into the networks you need.

One solution: use 172.17.42.0/27, 172.17.42.32/27, 172.17.42.64/27, and
172.17.42.96/27 for the servers and 172.17.42.128/25 for the clients. Each
of the server networks will have 30 usable addresses (27 bits for the network
address leaves 5 bits for the host address, which is 32 possibilities; the low
value is used to identify the network, whereas the high value is the broadcast
address), whereas the client network will have 126 addresses.

b. A computer on an Ethernet network with MAC address FF:FF:FE:09:42:A3

and IP address 172.17.42.37 sends the message Hello, world!\r\n via UDP
from port 51500 to a computer with MAC address FF:FF:FB:3D:28:9C and
IP address 172.17.42.58 on port 9. Describe each of the Ethernet frames
resulting from this conversation. Assume the sender’s ARP cache is empty at
the beginning of the conversation.

This is a short conversation – three packets. First, the ARP broadcast looking
for 172.17.42.58:

Ethernet II frame

Destination: FF:FF:FF:FF:FF:FF (broadcast)

Source: FF:FF:FE:09:42:A3

Type: 0x0806 (ARP)

ARP packet

Hardware type: 0x0001 (Ethernet)

Protocol: 0x0800 (IP)

Opcode: 0x0001 (request)

Sender MAC: FF:FF:FE:09:42:A3

Sender IP: 172.17.42.37

Target MAC: 00:00:00:00:00:00

Target IP: 172.17.42.58

The reply to the ARP request is not broadcast:

Ethernet II frame

1



Destination: FF:FF:FE:09:42:A3

Source: FF:FF:FB:3D:28:9C

Type: 0x0806 (ARP)

ARP packet

Hardware type: 0x0001 (Ethernet)

Protocol: 0x0800 (IP)

Opcode: 0x0002 (reply)

Sender MAC: FF:FF:FB:3D:28:9C

Sender IP: 172.17.42.58

Target MAC: FF:FF:FE:09:42:A3

Target IP: 172.17.42.37

With the MAC address of the destination in hand, the message is sent as a
single UDP packet:

Ethernet II frame

Destination: FF:FF:FB:3D:28:9C

Source: FF:FF:FE:09:42:A3

Type: 0x0800 (IP)

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 43 bytes

IPID: 32181 [could be anything]

Flags: 0x04 (DF bit set, MF bit clear)

Fragment offset: 0

TTL: 64 [could be more or less, depending on the IP stack]

Protocol: 0x11 (UDP)

Source: 172.17.42.37

Destination: 172.17.42.58

UDP packet

Source port: 51500

Destination port: 9

Length: 23 bytes

Data: Hello, world!\r\n

c. A computer with IP address 172.17.42.37 initiates a TCP connection from
port 51501 to a computer with IP address 172.17.42.58 on port 7. The
computer on .37 sends the string Hello, world!\r\n to the peer, which echos
back the same message; the two computers then close the connection. Describe
each of the IPv4 packets resulting from this conversation.

Because of the way the TCP teardown can work, there are a few different pos-

2



sibilities for what exactly happens during this conversation; here’s one. Note
that I haven’t used any TCP options here, which keeps the packets simpler;
a real conversation between modern hosts is likely to use at least selective
acknowledgment and TCP window scaling.

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 60 bytes

IPID: 51710 [could be anything]

Flags: 0x04 (DF bit set, MF bit clear)

Fragment offset: 0

TTL: 64 [could be more or less, depending on the IP stack]

Protocol: 0x06 (TCP)

Source: 172.17.42.37

Destination: 172.17.42.58

TCP packet

Source port: 51501

Destination port: 7

Sequence number: 1000 [subject to requirements on ISNs]

Acknowledgment number: 0

Header length: 20 bytes

Flags: 0x02 (SYN)

Window size: 5840 [depends on TCP stack and link]

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 60 bytes

IPID: 0 [could be anything]

Flags: 0x04 (DF bit set, MF bit clear)

Fragment offset: 0

TTL: 64 [could be more or less, depending on the IP stack]

Protocol: 0x06 (TCP)

Source: 172.17.42.58

Destination: 172.17.42.37

TCP packet

Source port: 7

Destination port: 51501

3



Sequence number: 2000 [subject to requirements on ISNs]

Acknowledgment number: 1001

Header length: 20 bytes

Flags: 0x12 (ACK|SYN)

Window size: 5792 [depends on TCP stack and link]

From this point, we only describe source and destination IP addresses, sequence
and acknowledgment numbers, TCP flags, window sizes, and data for each
packet.

Source: 172.17.42.37

Destination: 172.17.42.58

Sequence number: 1001

Acknowledgment number: 2001

Flags: 0x10 (ACK)

Window size: 5856

At this point, the three-way handshake is complete, and a TCP connection
has been established. Notice the way the window size has grown – no packets
have been dropped, so TCP allows more data to be transferred before the next
ACK.

Source: 172.17.42.37

Destination: 172.17.42.58

Sequence number: 1001

Acknowledgment number: 2001

Flags: 0x18 (ACK|PSH)

Window size: 5856

Data: Hello, world!\r\n

Note that the sequence number for the ACK is reused. Sequence numbers are
assigned for each byte of data, since it is data transmissions that need to be
acknowledged; empty ACK packets need not be acknowledged, so they do not
need to take up sequence number space. The PSH flag is set to tell the remote
TCP stack to flush its buffers to the application, since this is the logical end of
a transmission; if the transmission encompassed multiple packets, PSH would
only be set on the last of these.

Source: 172.17.42.58

Destination: 172.17.42.37

Sequence number: 2001

Acknowledgment number: 1016

Flags: 0x10 (ACK)

Window size: 5824

4



Notice the ACK number has jumped to 1016; sequence numbers are assigned
per byte of data, and our data was 15 bytes long. Once the conversation
starts, the empty ACK packet is strictly not necessary, as the packet can be
acknowledged by the next data packet, but most TCP stacks emit these.

Source: 172.17.42.58

Destination: 172.17.42.37

Sequence number: 2001

Acknowledgment number: 1016

Flags: 0x18 (ACK|PSH)

Window size: 5824

Data: Hello, world!\r\n

The server echos data back to the client.

Source: 172.17.42.37

Destination: 172.17.42.58

Sequence number: 1016

Acknowledgment number: 2016

Flags: 0x10 (ACK)

Window size: 5856

Source: 172.17.42.37

Destination: 172.17.42.58

Sequence number: 1016

Acknowledgment number: 2016

Flags: 0x11 (ACK|FIN)

Window size: 5856

The client is telling the server that it has no more data to send. Note that the
server can continue to send data to the client; this is known as a “half-open”
connection.

Source: 172.17.42.58

Destination: 172.17.42.37

Sequence number: 2016

Acknowledgment number: 1017

Flags: 0x11 (ACK|FIN)

Window size: 5824

FIN packets need to be acknowledged to complete the tear-down of the connec-
tion, so the ACK number has increased despite the fact that no further data
has been transmitted. The FIN flag is set to indicate that the server also has
no more data to send; again, a FIN from one side is not necessarily followed
immediately by a FIN from the other.

5



Source: 172.17.42.37

Destination: 172.17.42.58

Sequence number: 1017

Acknowledgment number: 2017

Flags: 0x10 (ACK)

Window size: 5856

This last ACK from the client completes the tear-down of the TCP connection
in both directions.

Notice the overhead from the TCP connection; what would have taken two
packets to say in UDP has taken 10 packets to say in TCP. TCP is therefore
frequently undesirable for conversations like this, consisting of short, discrete
messages; on the other hand, if transmitting larger streams of information, or
if reliability is an issue, the overhead is less of a problem.

2. Idle scan. TCP initial sequence numbers aren’t the only numbers that are prob-
lematic if they are predictable. There’s an interesting technique called “idle scan”,
implemented in recent versions of nmap, that relies on a “zombie” host whose IPID
numbers are predictable.

a. How does this scan work? Why does the zombie host have to be idle? Where
do the predictable IPID numbers come in?

The scanning host first sends a packet to the zombie, and looks at the reply to
collect its current IPID number. The scanning host sends a TCP SYN packet
with source address forged to be that of the zombie host to the scan target. If
the port is open on the scan target, the target will reply to the zombie with
a SYN|ACK, which will cause the zombie to reply with an RST packet; this
causes the IPID number of the zombie’s packets to increase in the predictable
manner previously detected. If the port is closed, an RST will be sent to the
zombie, which silently drops the packet; the zombie’s IPID number does not
increase in this scenario. Hence, by querying the zombie’s IPID number before
and after this sequence, we may determine whether or not the queried port
was open.

This scheme breaks down if the zombie has any traffic other than the scan traf-
fic, because increases in the IPID number will then not necessarily be correlated
to whether the port on the target is open or not.

b. From where does the scan appear to be coming from, the scanning host or the
zombie? Why? Why might this be a problem if a zombie on your network is
being used to scan one of your machines?

The scan appears to be coming from the zombie, since this is the source address
the scan target sees. This means that the scan results reflect the perspective
of the zombie! If an attacker can find a zombie on your network, then he can

6



scan your machines as if he were inside your network, thus possibly evading
some of your firewall rules.

c. What can you do to prevent idle scans from being launched from inside your
network?

Since conducting an idle scan depends on the ability to send packets with
spoofed source addresses, you can prevent idle scans of hosts outside your net-
work from being launched inside your network by implementing egress filtering
of packets with clearly spoofed source addresses (i.e. source addresses outside
your network).

7


