
Advanced Unix System Administration

Spring 2008

Homework 2

This assignment is due via email to <sluo+decal@ocf.berkeley.edu> by 11:59 PM on
Thursday, March 13 (I’m willing to extend this to the following Monday, if people
want).

1. POSIX ACLs, and portability considerations. I noted in class that POSIX draft
ACLs don’t necessarily behave the same way on all the systems where they’re im-
plemented. While the behavior of the ACL access checking doesn’t differ the way
I implied it did in class, there are plenty of user-visible differences in the utilities.
Here’s a chance to work with ACLs a bit, and look at portability differences be-
tween Linux and Solaris (specifically, Solaris Nevada build 78, a pre-release version
of Solaris 11).

The Solaris box to use is available via SSH from tempest to 10.20.0.22 (use your
tempest username and password).

a. On a Linux box (like tempest), create a new file with permissions 0600, then
set ACLs on it allowing user nobody to read it (don’t forget the mask). Look
at the output of ls -l on the file. Repeat on Solaris. What differences, if any,
do you notice?

b. Remove the ACLs on the file, on both Linux and Solaris. What did you do
differently on each system?

c. Now create a directory with permissions 0700. Set a default ACL on it allow-
ing user nobody to read files created in this directory, and cd into and read
subdirectories of this directory. How does the procedure for doing this differ?

d. Create a new file and a new subdirectory in this directory, and look at the
ACLs that they inherit. Are they the same on both Linux and Solaris? How
does the mask interact with the ACL entry for user nobody?

e. Use chmod to add group execute permissions to the file you created in part (d).
Look at the ACLs now; why did they change in this way? Compare the ACLs
on Linux and Solaris. Are they the same?

f. Set umask 777, then try creating a new file. Is the umask honored?

g. Trace the getfacl command on both systems (on Solaris, you want truss(1)).
Identify the system call used to access the ACL list. Is it the same on both
systems? Optional: What does this reveal about the way POSIX draft ACLs
are implemented on the two systems?

1



These sorts of portability differences drive everyone who has to work on multiple
systems crazy; this is why, where possible, you want to demand that your software
vendors work towards creating cross-platform standards, and adhere to existing
standards to the greatest degree possible.

2. A login session. This problem and the next one require root access to a Unix system.
You each have a virtual machine set up, accessible from tempest on 10.20.1.x1,
where x is the last digit of your UID on tempest (id will show your UID). Log in
with your tempest username and password (direct root SSH logins are disabled);
the root password will be the same as your password.

a. Trace an SSH login. What UID does the login process initially run as? Must
this be the case, and why? Identify the parts of the output that show when
the process changes user and group IDs, and when your login shell is invoked.

b. Look up what a POSIX “session” is, and what a “session leader” is. Give
two reasons why it’s important that a new session be created for a user login.
(Hint: one has to do with an important feature people expect from their shells;
another has to do with what happens if, say, the SSH daemon dies or is killed.)
Identify in the trace output where the session corresponding to your login shell
is created. Identify which process ends up being the session leader for the
login session once the login shell is invoked. (If you’re having trouble finding
these definitions, try looking in the Single Unix Specification, available from
the Open Group. I encourage you to look for other resources first, though,
since, like all standards documents, the writing is extremely dense.)

c. Look up what a “controlling terminal” is. Why is it important that a user
login has a controlling terminal? Identify in the trace output when the login
process acquires your controlling terminal, and give the name of the device file
which corresponds to it.

d. Outline the steps needed for a running process (such as sshd or login) to
create a normal login session for a user. What is the latest point at which you
could effectively set up resource limits for a login session, and why?

3. User names and UIDs. As I mentioned in class, the relationship between user names
and UIDs is not as absolute as you might believe.

a. Create a new user, and observe what ls shows the owner of that user’s home
directory to be.

b. Change the username (edit /etc/passwd and /etc/shadow). Does the owner
displayed by ls for the user’s home directory change as well?

c. Remove the /etc/passwd entry for your new user (make a backup first, you’ll
need it for the rest of the problem). Now what does ls show for the ownership
of the user’s home directory?

2



d. Based on the above, how do you think the ownership information is stored on
disk? How do you think ls decides what username to display?

e. Restore the entry you removed, and create a second entry in /etc/passwd with
the same UID, but a different username. Copy the /etc/shadow entry for the
first user and change the username to match your duplicate user. Try logging
in as both. Do things look and behave the same for both? Is there a difference
in what files they can read? Can they kill each other’s processes?

f. Add one of the users to a group to which it doesn’t already belong, and try
logging in as both users again. Do they both belong to this group? Change
one of the users’ passwords. Do they both have the same password now?

g. Based on the above, why might you want to have two users with the same
UID? How might this be abused?

4. A simplified set of init scripts. I mentioned in class that reading init scripts is one
of the best ways to learn how an unfamiliar, inadequately documented system is put
together and how to configure it. Here’s a simplified set of init scripts that does what
it takes to configure and boot the system, while being easier to read through than
real scripts (which have to deal with many varied configurations, errors, etc.). Note
that, to avoid complexity, the configuration looks different than most traditional
Unix systems.

From tempest, log in to 10.20.0.21 using your tempest username and password.

a. Examine /etc/inittab. Do these init scripts implement a SysV- or BSD-style
init? How do you know?

b. Describe in general terms the tasks that will be performed on every system
boot, no matter which runlevel is selected.

c. How would you configure a new filesystem (/dev/hdc1, type ext3, mounted
on /export with options nodev and nosuid) to be mounted on boot? What if
you didn’t want it to be mounted on boot? How would you change the mount
options for the root filesystem? How would you force the system to check all
filesystems on the next boot?

d. How would you add a new network interface (device name eth1, with IP ad-
dress 10.20.42.42, netmask 255.255.255.0)? How would you change eth0’s
IP address? How would you change the default route?

e. What is the default runlevel? Describe in general terms the tasks that are
performed when booting into this runlevel.

f. Describe in general terms what tasks are performed when the system is shut
down. (Hint: which runlevel corresponds to shutdown?)

g. Suppose you wanted to have a webserver (init script /etc/init.d/httpd) be
started on system startup and stopped gracefully on system shutdown. How
would you set this up?

3


