
Advanced Unix System Administration

Spring 2008

Homework 2 Solutions

1. POSIX ACLs, and portability considerations. I noted in class that POSIX draft
ACLs don’t necessarily behave the same way on all the systems where they’re im-
plemented. While the behavior of the ACL access checking doesn’t differ the way
I implied it did in class, there are plenty of user-visible differences in the utilities.
Here’s a chance to work with ACLs a bit, and look at portability differences be-
tween Linux and Solaris (specifically, Solaris Nevada build 78, a pre-release version
of Solaris 11).

a. On a Linux box (like tempest), create a new file with permissions 0600, then
set ACLs on it allowing user nobody to read it (don’t forget the mask). Look
at the output of ls -l on the file. Repeat on Solaris. What differences, if any,
do you notice?

On Linux:

sluo@tempest:~$ touch file

sluo@tempest:~$ chmod 600 file

sluo@tempest:~$ setfacl -m u:nobody:4,m:4 file

sluo@tempest:~$ ls -l file

-rw-r-----+ 1 sluo sluo 0 2008-04-21 19:21 file

On Solaris (I’m using a Solaris 10 box, but you should have gotten the same
results):

[sluo@asteroid ~]$ touch file

[sluo@asteroid ~]$ chmod 600 file

[sluo@asteroid ~]$ setfacl -m u:nobody:4,m:4 file

[sluo@asteroid ~]$ ls -l file

-rw-------+ 1 sluo ocf 0 Apr 21 19:22 file

The commands work the same way, but ls shows different permissions for the
file. Recall that the mask attribute for a POSIX ACL is actually stored as
the regular group permissions on the file, and not as part of the ACL list; the
Linux ls is simply displaying the regular permission bits, whereas the Solaris
ls is smart enough to look at the ACLs on the file:

[sluo@asteroid ~]$ setfacl -m g::4 file

[sluo@asteroid ~]$ ls -l file

-rw-r-----+ 1 sluo ocf 0 Apr 21 19:22 file

In both cases, a + is displayed at the end of the permissions string, to indicate
that an ACL is set on the file.

1

(In either case, you could have used symbolic modes:

setfacl -m u:nobody:r--,m:r-- file

would also have worked. I’m just used to numeric modes.)

b. Remove the ACLs on the file, on both Linux and Solaris. What did you do
differently on each system?

Linux:

sluo@tempest:~$ setfacl -x u:nobody,m file

sluo@tempest:~$ ls -l file

-rw------- 1 sluo sluo 0 2008-04-21 19:21 file

Solaris:

[sluo@asteroid ~]$ setfacl -d u:nobody,m: file

[sluo@asteroid ~]$ ls -l file

-rw------- 1 sluo ocf 0 Apr 21 19:22 file

Not only do they need different arguments to setfacl, they parse the ACL
specification list differently! Annoying.

c. Now create a directory with permissions 0700. Set a default ACL on it allow-
ing user nobody to read files created in this directory, and cd into and read
subdirectories of this directory. How does the procedure for doing this differ?

Linux:

sluo@tempest:~$ mkdir dir

sluo@tempest:~$ chmod 700 dir

sluo@tempest:~$ setfacl -m d:u:nobody:5,d:m:5 dir

Solaris:

[sluo@asteroid ~]$ mkdir dir

[sluo@asteroid ~]$ chmod 700 dir

[sluo@asteroid ~]$ setfacl -m \

d:u::7,d:g::0,d:o:0,d:u:nobody:5,d:m:5 dir

Notice you have to specify all the default ACL entries – if you’d tried what
you did on Linux, you’d see:

[sluo@asteroid ~]$ setfacl -m d:u:nobody:5,d:m:5 dir

Missing user/group owner, other, mask entry

aclcnt 6, file dir

When default ACL entries are present, the user and group owner and other
entries must always be present; unlike the Linux setfacl, the Solaris setfacl
does not fill these values in for you with sane defaults if you omit them.

2

d. Create a new file and a new subdirectory in this directory, and look at the
ACLs that they inherit. Are they the same on both Linux and Solaris? How
does the mask interact with the ACL entry for user nobody?

Linux:

sluo@tempest:~$ cd dir

sluo@tempest:~/dir$ touch file

sluo@tempest:~/dir$ mkdir dir

sluo@tempest:~/dir$ getfacl file

file: file

owner: sluo

group: sluo

user::rw-

user:nobody:r-x #effective:r--

group::---

mask::r--

other::---

sluo@tempest:~/dir$ getfacl dir

file: dir

owner: sluo

group: sluo

user::rwx

user:nobody:r-x

group::---

mask::r-x

other::---

default:user::rwx

default:user:nobody:r-x

default:group::---

default:mask::r-x

default:other::---

Solaris:

[sluo@asteroid ~]$ cd dir

[sluo@asteroid ~/dir]$ touch file

[sluo@asteroid ~/dir]$ mkdir dir

[sluo@asteroid ~/dir]$ getfacl file

file: file

owner: sluo

group: ocf

3

user::rw-

user:nobody:r-x #effective:r--

group::--- #effective:---

mask:r--

other:---

[sluo@asteroid ~/dir]$ getfacl dir

file: dir

owner: sluo

group: ocf

user::rwx

user:nobody:r-x #effective:r-x

group::--- #effective:---

mask:r-x

other:---

default:user::rwx

default:user:nobody:r-x

default:group::---

default:mask:r-x

default:other:---

The inherited ACLs are (thankfully) the same on Linux and Solaris. Notice the
ACL on the file you created; the ACL for nobody says that read and execute
permissions should be available, but the mask no longer has the execute bit set
(presumably because touch created the file with requested permissions 0666,
which prevents the file from being executed), so execute is not permitted.

e. Use chmod to add group execute permissions to the file you created in part (d).
Look at the ACLs now; why did they change in this way? Compare the ACLs
on Linux and Solaris. Are they the same?

Linux:

sluo@tempest:~/dir$ chmod g+x file

sluo@tempest:~/dir$ getfacl file

file: file

owner: sluo

group: sluo

user::rw-

user:nobody:r-x

group::---

mask::r-x

other::---

Solaris:

4

[sluo@asteroid ~/dir]$ chmod g+x file

[sluo@asteroid ~/dir]$ getfacl file

file: file

owner: sluo

group: ocf

user::rw-

user:nobody:r-x #effective:r-x

group::--x #effective:--x

mask:r-x

other:---

In both cases, execute permission is added to the mask (remember that the
mask is stored as the regular group permission). Solaris chmod also creates
a group owner ACL for you with the execute bit set, which results in more
intuitive behavior than on Linux (where chmod g+x doesn’t give the group
owner execute permission, like it normally would). In both cases, though, the
addition of execute permission to the mask also allows user nobody to execute
the file – perhaps not the result you were expecting!

f. Set umask 777, then try creating a new file. Is the umask honored?

Linux:

sluo@tempest:~/dir$ umask 777

sluo@tempest:~/dir$ touch file2

sluo@tempest:~/dir$ getfacl file2

file: file2

owner: sluo

group: sluo

user::rw-

user:nobody:r-x #effective:r--

group::---

mask::r--

other::---

Solaris:

[sluo@asteroid ~/dir]$ umask 777

[sluo@asteroid ~/dir]$ touch file2

[sluo@asteroid ~/dir]$ getfacl file2

file: file2

owner: sluo

group: ocf

user::rw-

5

user:nobody:r-x #effective:r--

group::--- #effective:---

mask:r--

other:---

In a word, no. This is rather unfortunate, as it means, for example, that
setting a default ACL on your home directory is not such a good idea (because
programs which change the umask and expect the files they create to be private
won’t have such behavior).

g. Trace the getfacl command on both systems (on Solaris, you want truss(1)).
Identify the system call used to access the ACL list. Is it the same on both
systems? Optional: What does this reveal about the way POSIX draft ACLs
are implemented on the two systems?

On Linux, strace getfacl file contains the following:

getxattr("file", "system.posix_acl_access", "\x02\x00"..., 132)

= 44

Linux stores POSIX ACLs as a form of extended attribute in the underlying
filesystem, so the system call used to get the ACLs is the generic one for
accessing extended attributes. A libacl userspace library provides functions
so that programs don’t have to know this.

On Solaris, truss getfacl file gives us:

acl("file", GETACLCNT, 0, 0x00000000) = 5

acl("file", GETACL, 5, 0x08063778) = 5

Solaris has a dedicated acl() system call for accessing ACLs. (This doesn’t
tell us anything about how ACLs are implemented on Solaris, by the way.)

These sorts of portability differences drive everyone who has to work on multiple
systems crazy; this is why, where possible, you want to demand that your software
vendors work towards creating cross-platform standards, and adhere to existing
standards to the greatest degree possible.

2. A login session.

a. Trace an SSH login. What UID does the login process initially run as? Must
this be the case, and why? Identify the parts of the output that show when
the process changes user and group IDs, and when your login shell is invoked.

sshd initially runs as root. On a standard Unix system, this must be the case,
since sshd is going to have to eventually change users and become you for your
login session.

There are two places where sshd changes UID or GID for a password-based
login; only one of them is absolutely necessary, the rest being done for security

6

reasons. The first time is shortly after sshd forks a child process to handle the
incoming network connection from an unauthenticated user:

12505 setregid(65534, 65534) = 0

12505 setreuid(103, 103) = 0

On Linux, at least, this is sufficient to change real, effective, and saved UIDs
and GIDs (see the man page) to the new values (GID 65534 corresponds to
nogroup, and UID 103 is sshd on this system). Hence the process directly
handling the network connection has dropped all its privileges, which reduces
the impact an attacker can have if he compromises this daemon.

The other time is when actually performing the login:

12508 setregid(1000, 1000) = 0

12508 setreuid(1000, 1000) = 0

This changes UID and GID to my UID and GID, in preparation for logging
me in.

The actual running of my login shell comes a bit later:

12509 execve("/bin/bash", ["-bash"], [/* 11 vars */]) = 0

Note the “-” at the beginning of the first element of the arguments list (re-
member, by convention, this is the name of the process); this tells the shell
that it is to run as a login shell.

b. Look up what a POSIX “session” is, and what a “session leader” is. Give
two reasons why it’s important that a new session be created for a user login.
(Hint: one has to do with an important feature people expect from their shells;
another has to do with what happens if, say, the SSH daemon dies or is killed.)
Identify in the trace output where the session corresponding to your login shell
is created. Identify which process ends up being the session leader for the
login session once the login shell is invoked. (If you’re having trouble finding
these definitions, try looking in the Single Unix Specification, available from
the Open Group. I encourage you to look for other resources first, though,
since, like all standards documents, the writing is extremely dense.)

The Single Unix Specification version 3 (SUSv3) defines a “session” as (Base
Definitions volume, §3.337)

A collection of process groups established for job control purposes.
Each process group is a member of a session. A process is considered
to be a member of the session of which its process group is a member.
A newly created process joins the session of its creator. A process can
alter its session membership; see setsid(). There can be multiple
process groups in the same session.

§3.338 defines a session leader as “A process that has created a session”.

7

As is unfortunately not too uncommon for standards documents, this is a
definition that only makes sense if you already know what a session is. The ra-
tionale section for the documentation on setsid() (System Interfaces volume)
has more useful information:

The setsid() function is similar to the setpgrp() function of System
V. System V, without job control, groups processes into process groups
and creates new process groups via setpgrp(); only one process group
may be part of a login session.
Job control allows multiple process groups within a login session. In
order to limit job control actions so that they can only affect processes
in the same login session, this volume of IEEE Std 1003.1-2001 adds
the concept of a session that is created via setsid(). The setsid()

function also creates the initial process group contained in the session.
Additional process groups can be created via the setpgid() function.
A System V process group would correspond to a POSIX System
Interfaces session containing a single POSIX process group. [. . .]

In other words, each “job”, for purposes of process control, is a process group,
and these are all grouped into your shell’s session. When your shell wants to
suspend or resume a job, it sends the appropriate signal (usually SIGTSTP for
a suspension, and SIGCONT for a continuation) to the corresponding process
group (this just sends that signal to all the processes in a process group).
Hence one of the important reasons to create a new session for your user login
is to ensure that job control works correctly.

The other reason to create a new session is that this ensures that your login
process is in a different session and process group than the main SSH daemon.
This way, if the SSH daemon is killed, your login isn’t killed off as well; this
allows an administrator to restart SSH without forcibly logging users off.

With all of this, it should be clear what to look for in the trace output:

12509 setsid() = 12509

This is called before my login shell is invoked, which means, that, once the
login shell is exec()ed, it is the session leader. Given the above discussion,
none of this should come as a surprise.

c. Look up what a “controlling terminal” is. Why is it important that a user
login has a controlling terminal? Identify in the trace output when the login
process acquires your controlling terminal, and give the name of the device file
which corresponds to it.

The Single Unix Specification version 3 (SUSv3) defines a “controlling termi-
nal” as (Base Definitions volume, §3.114)

A terminal that is associated with a session. Each session may have at
most one controlling terminal associated with it, and a controlling ter-
minal is associated with exactly one session. Certain input sequences

8

from the controlling terminal cause signals to be sent to all processes
in the process group associated with the controlling terminal.

In other words, the controlling terminal of a session is the terminal that that
login session is attached to. A full description of the terminal interface is given
in Base Definitions volume §11, “General Terminal Interface”. Roughly, a ter-
minal provides interactive input and output, and provides some features such
as interpreting Ctrl-Z as “suspend foreground process” and killing off processes
in its login session if it’s disconnected (user logs out, or SSH connection or serial
line drops, for example). It’s important for a login to have a controlling termi-
nal because many programs, particularly interactive command-line programs,
expect to have a terminal available.

SUS does not specify how one goes about acquiring a controlling terminal after
having lost it with setsid(), but at least on Linux and several other systems,
this is done by opening the device file for the terminal:

12509 open("/dev/pts/2", O_RDWR) = 8

This happens after the new session is created, but before the login shell is
invoked – again, not too surprising, given what we know.

d. Outline the steps needed for a running process (such as sshd or login) to
create a normal login session for a user. What is the latest point at which you
could effectively set up resource limits for a login session, and why?

The process roughly goes as follows (assuming the user has been authenticated
already):

• Change user and group IDs to those of the user being logged in.

• Fork, to ensure that the following call to setsid() succeeds (setsid()
requires that the the calling process is not process group leader, and doing
a fork() ensures that it isn’t).

• Call setsid() to become session leader of a new session.

• Open a controlling terminal.

• Change the current working directory to the user’s home directory.

• Run the user’s login shell.

It’s possible to set up resource limits at any point before the user’s login shell
is run. Resource limits are inherited by children of a process, so it’s safe to set
them even before forking, and any limits set before the login shell is run will
be inherited by any process the user runs from that shell. On the other hand,
if the limits are set after the user’s shell is run, he/she has the opportunity to
launch processes which are not subject to the limits.

3. User names and UIDs. As I mentioned in class, the relationship between user names
and UIDs is not as absolute as you might believe.

9

a. Create a new user, and observe what ls shows the owner of that user’s home
directory to be.

tempest:~# adduser foobar

[...]

tempest:~# ls -ld /home/foobar

drwxr-xr-x 2 foobar foobar 4096 2008-04-22 02:51 /home/foobar

No surprises so far.

b. Change the username (edit /etc/passwd and /etc/shadow). Does the owner
displayed by ls for the user’s home directory change as well?

After changing the username to baz by editing the appropriate files:

tempest:~# ls -ld /home/foobar

drwxr-xr-x 2 baz foobar 4096 2008-04-22 02:51 /home/foobar

c. Remove the /etc/passwd entry for your new user (make a backup first, you’ll
need it for the rest of the problem). Now what does ls show for the ownership
of the user’s home directory?

Now we see:

tempest:~# ls -ld /home/foobar

drwxr-xr-x 2 1007 foobar 4096 2008-04-22 02:51 /home/foobar

d. Based on the above, how do you think the ownership information is stored on
disk? How do you think ls decides what username to display?

Clearly, ownership information is stored on disk with the numeric user ID –
which is in keeping with the general principle that access checks on users are
done on the user ID, not the username. On most systems, ls decides what
username to display for a particular UID based on the mapping defined in
/etc/passwd; more generally, the Name Service Switch is used to determine
what data source to use for username-UID mappings.

If, for some reason, you managed to do these exercises on a machine where the
name service cache daemon (nscd) was running, it might have taken several
minutes for the cached entries to expire; hence the changes to /etc/passwd

may not have been reflected immediately in the ls output. nscd is rare on
systems that don’t use network NSS sources (LDAP, NIS, etc.), though, so this
wasn’t likely a problem for you.

e. Restore the entry you removed, and create a second entry in /etc/passwd with
the same UID, but a different username. Copy the /etc/shadow entry for the
first user and change the username to match your duplicate user. Try logging
in as both. Do things look and behave the same for both? Is there a difference
in what files they can read? Can they kill each other’s processes?

10

You should notice that everything looks and behaves the same way for both
users, that they can read the same files, and kill each other’s processes. Again,
remember that in general, access checks in the kernel are done by UID and not
by username, so this makes sense.

f. Add one of the users to a group to which it doesn’t already belong, and try
logging in as both users again. Do they both belong to this group? Change
one of the users’ passwords. Do they both have the same password now?

Having added baz, but not quux, to group cdrom by editing /etc/group, we
see this for baz:

baz@tempest:~$ echo $USER

baz

baz@tempest:~$ groups

foobar cdrom

For quux, on the other hand:

baz@tempest:~$ echo $USER

quux

baz@tempest:~$ groups

foobar

In other words, it is possible to add one user to groups without adding the
other.

You should also have noticed that changing the password for one user does not
affect the password for the other user.

These are two of the places where the information is indexed by username
and not UID, so this isn’t too surprising; the inconsistency is perhaps a bit
troubling, but there’s really nothing to be done about it at this point . . .

g. Based on the above, why might you want to have two users with the same
UID? How might this be abused?

Having two users with the same UID might be useful in a situation where you
want the same “user” to be able to have two different group lists; for example,
where you normally want to log in without certain extra groups, but want to be
able to get those groups’ privileges without losing access to files owned by that
user. On the other hand, a second account with UID 0 might go completely
unnoticed, but still have full root privileges (attackers have been known to
create extra accounts with UID 0 as a form of crude back door, in fact).

4. A simplified set of init scripts. I mentioned in class that reading init scripts is one
of the best ways to learn how an unfamiliar, inadequately documented system is put
together and how to configure it. Here’s a simplified set of init scripts that does what
it takes to configure and boot the system, while being easier to read through than
real scripts (which have to deal with many varied configurations, errors, etc.). Note

11

that, to avoid complexity, the configuration looks different than most traditional
Unix systems.

a. Examine /etc/inittab. Do these init scripts implement a SysV- or BSD-style
init? How do you know?

They implement SysV-style init – they deal with runlevels, which is a concept
traditional BSD-style init doesn’t have.

b. Describe in general terms the tasks that will be performed on every system
boot, no matter which runlevel is selected.

/etc/inittab has this to say about what happens when the system boots:

si::sysinit:/etc/init.d/rc S

On boot, then, /etc/init.d/rc S is run. Reading this script, we find that
this just runs all the scripts linked to in /etc/rcS.d, with links starting with
S called with the start argument and links starting with K called with stop:

• S01hostname: sets the system hostname to the contents of /etc/hostname

• S02mountkernfs: mounts /proc and /sys, pseudo-filesystems used by
various programs on Linux

• S10mountroot: checks the root filesystem for errors, then mounts it

• S15modules: loads kernel modules listed in /etc/modules

• S20mountfs: check and mount the rest of the filesystems

• S30networking: configure network interfaces

• S50wtmp: create /var/run/utmp. utmp is used by the system to record
who’s currently logged in.

• S70urandom: load some stored entropy (randomness) from the last boot
into the kernel random number generator, to ensure that the generated
random numbers won’t be predictable

c. How would you configure a new filesystem (/dev/hdc1, type ext3, mounted
on /export with options nodev and nosuid) to be mounted on boot? What if
you didn’t want it to be mounted on boot? How would you change the mount
options for the root filesystem? How would you force the system to check all
filesystems on the next boot?

To add the new filesystem, add a file in /etc/filesystems (for example,
/etc/filesystems/3, though any other name would do; note that filesys-
tems are mounted in the order which these filenames sort), with the following
contents:

DEVICE=/dev/hdc1

FSTYPE=ext3

MOUNTPOINT=/export

FSOPTS=nodev,nosuid

MOUNT_AT_BOOT=yes

12

To prevent this from being mounted on boot, simply change the value of
MOUNT_AT_BOOT to any value other than “yes” (the logical choice being “no”,
but anything else would do too). (Note that it won’t do to simply remove
MOUNT_AT_BOOT from the file, since this results in behavior that depends on
what the previously considered filesystem was configured for! This is a bug in
the script, which I didn’t think was worth fixing.)

To change the mount options for the root filesystem (or any other filesystem,
for that matter), edit the appropriate config file file (for the root filesystem,
/etc/filesystems/0) and change or add the FSOPTS line as necessary.

To force a filesystem check on the next boot, touch /forcefsck.

Notice that this is nothing like the usual filesystem configuration, which in-
volves editing /etc/fstab (or a similar file). The init scripts can implement
any configuration interface they like; it’s just that, in most cases, distributors
implement standard interfaces like fstab. I chose not to do this here because
the code needed to parse the file would have been more complex and difficult
to read.

d. How would you add a new network interface (device name eth1, with IP ad-
dress 10.20.42.42, netmask 255.255.255.0)? How would you change eth0’s
IP address? How would you change the default route?

To add a new network interface, add a new file /etc/netif/eth1 with the
following contents:

IPADDR=10.20.42.42

NETMASK=255.255.255.0

To add another interface, just create a file in /etc/netif with the name of the
interface, containing the appropriate settings.

To change eth0’s IP address, edit the IPADDR variable in /etc/netif/eth0.

To change the default route, change the contents of /etc/defaultrouter.

As far as I know, this network configuration style isn’t shared by any serious
distribution, though elements of it are inspired by network configuration on
the BSDs and Solaris.

e. What is the default runlevel? Describe in general terms the tasks that are
performed when booting into this runlevel.

/etc/inittab contains the following:

id:3:initdefault:

which tells us that runlevel 3 is the default.

To determine what happens when we boot into this runlevel, we look at the
lines in /etc/inittab with a “3” in the runlevel field:

r2:23:wait:/etc/init.d/rc 2

13

r3:3:wait:/etc/init.d/rc 3

1:23:respawn:/sbin/getty 38400 tty1

In other words, when booting into runlevel 3, first /etc/init.d/rc 2 is run,
then /etc/init.d/rc 3, then /sbin/getty 38400 tty1 is run and respawned
whenever it dies. This is a SysV-style init in the way Solaris implements it;
when booting into runlevel N , tasks for runlevels 2 through (N − 1) are run
as well.

The startup scripts in runlevel 2, which are run first, are:

• S10sysklogd: starts the system log daemon

• S11klogd: starts the kernel log daemon (reads from the kernel message
log and writes the contents to syslog)

• S89cron: starts the cron daemon

Next, the script in runlevel 3 is run:

• S20ssh: starts the SSH daemon

The getty then provides terminal login services on tty1, the first virtual con-
sole. Each getty only handles one login session; once a user logs out, the
getty dies and is respawned by init.

f. Describe in general terms what tasks are performed when the system is shut
down. (Hint: which runlevel corresponds to shutdown?)

Remembering that the system goes into runlevel 0 when it’s shut down, we
look in /etc/inittab and find that the scripts in /etc/rc.0 are executed on
shutdown:

• K10sshd: stop the SSH daemon

• K39cron: stop the cron daemon

• K48klogd: stop the kernel log daemon

• K49sysklogd: stop the system log daemon

• K50killall: kill all processes still running on the system

• K55wtmp: write a reboot record into /var/log/wtmp (which records every-
one who’s logged in, and each system start and stop)

• K55urandom: save some entropy to disk to seed the kernel random number
generator with at the next boot

• K60networking: bring down network interfaces

• K80mountfs: unmount filesystems (note that, for simplicity, this doesn’t
deal with mounted filesystems which aren’t in /etc/filesystems! this is
probably a bug)

• K90mountroot: remount the root filesystem read-only

• K99poweroff: turn off the computer

14

g. Suppose you wanted to have a webserver (init script /etc/init.d/httpd) be
started on system startup and stopped gracefully on system shutdown. How
would you set this up?

Add some links pointing to /etc/init.d/httpd in the appropriate runlevels:

• /etc/rc3.d/S20httpd

• /etc/rc0.d/K10httpd

• /etc/rc6.d/K10httpd

Where the start script is placed in the boot sequence doesn’t really matter,
as long as it’s after filesystems have been mounted and the network has been
brought up. The placement of the shutdown scripts doesn’t really matter
either, as long as the server’s stopped before it’s killed off via brute force by
the killall script.

To be complete, we should also add a /etc/rc1.d/K10httpd killing off the
server when we go into single user mode, but I didn’t ask for that in the
problem . . .

15

