
Shell Scripting
Intermediate Systems Administration DeCal

Lecture #6
Joshua Kwan

Today

• Unlock the raw power of the shell as a
programming language!

• How to use variables + special variables

• How to create functions

• Control structures: for, while, if, case

• Input functionality with read, shift

• Shell builtins: echo, printf, let, test (aka [)

Shell scripts

• At their simplest, just a list of commands
executed in order as if you had typed them
into the shell.

• Anything you can do at the shell, you can
do in a shell script, and vice versa.

• Like DOS batch scripts, but way better.

• Run them by putting “#!/bin/sh” at the top
and using chmod +x to make executable.

Variables

• Assignment: FOO=“Test 1 2 3”

• Reference: echo $FOO or echo “$FOO”
(What’s the difference?)

• Want to set a variable to the output of a
command? Input substitution!
FOO=$(ls pictures)

Special Shell Variables

• $1, $2, $3.. - arguments passed in on
command line.

• $@ - all arguments as a big string.

• $# - number of arguments passed in

• $? - exit code of last program; you knew this
already

• $$ - your process ID

• $! - process ID of last program started w/ ‘&’

Functions

• When you make a shell script, lines of code
are executed top-to-bottom

• If you make functions, they won’t be run
though, just declared. You can use them as if
they were separate programs.

• Learn by example! We know enough to
write a simple program now.

Example 1
#!/bin/sh

confuciusprint() {
 echo "Confucius say: \"$@\""
}

confuciusprint "Baseball wrong. Man with four balls cannot walk."

echo "OK, now it's your turn! Here's your quote:"

confuciusprint "$@"

echo "What if it were only the first word you said?"

confuciusprint "$1"

Control structures
• For loops set a variable based on the contets of a

list (like python, unlike C):
for x in $(seq 1 9); do touch $x;
done

• While loops test a condition and exit when the
condition is 1. You can also run a program...
while ! try_to_connect; do echo
“Trying to connect...”; done

• and if statements behave the same way (use a
conditional or a program), but they don’t loop
if [$SUM -eq 0]; then echo Zero;
fi

Control structures

• You can have many conditional branches with
if: if ...; then ...; elif ...;
then ...; else ...; fi

• case statements; like switch in C, for many
nested ifs:
case “$x” in
[aA]) echo “a for anteater!” ;;
b|c) echo “you typed in b or c” ;;
*) echo “who knows what you typed”;;
esac

Conditionals

• In a previous example we did this:
if [$SUM -eq 0]; then
 echo Zero
fi

• This is a conditional, however it’s implemented
using a program called [that evaluates the
condition and returns 0 or 1.

• test is the same thing, but it doesn’t require a
closing bracket. Personal taste.
if test $SUM -eq 0; then ...

Conditionals
• [-n “$var”]: returns true if $var is non-

blank (opposite: -z)

• [“$var” -eq 1]: returns true if $var is a
number and is 1. (opposite: -ne)

• Ditto for -ge (greater/equal), -gt (greater than),
-le (less/equal), -lt (less than)

• [“$var” = foo]: returns true if $var equals
“foo” by string comparison. (opposite: !=)

• [-f “file.txt”]: returns true if file.txt
exists and is a file. No opposite; negate it, e.g.
[! -f “file.txt”]

Input processing

• Want to use standard input? read var
will read one line of standard input into
$var. A typical construct:

while read line; do
 do stuff with $line
done

Input processing

• You can also parse your command line
arguments one by one.
while [$# -gt 0]; do
 echo “$1”
 shift
done

• shift will delete $1, and shift everything else
down. ($2 becomes $1, $3 becomes $2).
Then it decrements the value of $#.

Useful builtins

• The shell has several built-in programs for
very common tasks.

• echo: prints a line to the screen, you knew
this already.

• printf: does printf(3) style formatting on
text, e.g. printf ‘%02d’ “$tracknumber”

• let: changes variables, e.g. let “x=x+1”
changes $x

Image resizing example
#!/bin/sh

FILE="$1"

if [! -f "$FILE"]; then
 exit 1
fi

ID=$(identify "$FILE" | cut -d' ' -f3)
WIDTH=$(echo "$ID" | cut -dx -f1)
HEIGHT=$(echo "$ID" | cut -dx -f2)
let RATIO=”(WIDTH*100)/HEIGHT”

if ["$RATIO" -eq 133]; then # landscape
 mogrify -scale $2x$3 "$FILE"
elif ["$RATIO" -eq 75]; then # portrait
 mogrify -scale $3x$2 "$FILE"
fi

