
UNIX Power Tools
Intermediate Systems Administration DeCal

Lecture #5
Joshua Kwan

How was the lab?

• Did you get everything set up on your VServers?
• Did you manage to annoy the hell out of each
other using ‘write’ and ‘wall’?

• Did you figure out how to get NetHack to build?
Did you play?

• REMEMBER, ALL LABS UP TO LAB 3 ARE DUE
TODAY! DON’T SHAME YOURSELF!

Today

• Learn to use tools cut, sed, sort, tr, and grep
to do amazing text manipulation

• Learn how to use regular expressions

• Learn how to use xargs to get over the
limitations of command substitution

• Learn to properly use find

sort(1)
• Easy stuff. Takes input, or file(s), and sorts

it; ascending alphanumerically by default

• Can sort by different criteria (see man
page) or by columns or backwards
sort -k2 a.txt b.txt
ls | sort -r

• Often used in conjunction with uniq(1):
sort classes-taken.txt | uniq
because uniq needs a sorted input. (Shows
unique lines in classes-taken.txt; uniq -u for
non-unique lines)

tr(1)

• Used to TRanslate characters or classes of
characters in an input stream, or delete
them. Does not work with strings!!
tr ‘a-z’ ‘A-Z’ names.txt

• Try commands below at your own risk.
echo “shiftclock” | tr -d fl
echo “go bears” | tr a e

cut(1)

• Splits lines into fields with the delimiter of
your choice

echo “a,b,c” | cut -d, -f1
(returns 1)
echo “Jack eats pie” | cut -d’ ‘ -f3
(returns pie)
echo “Jack eats pie” | cut -d, -f1
(returns Jack eats pie, since there are no
commas)

Joke time

Q: How do Unix sysadmins have sex?

A: unzip ; strip ; touch ; grep ; finger ; mount ; fsck ;
 more ; yes ; yes ; yes ; umount ; sleep

sed(1)

• Stands for Stream EDitor; takes input and
spits it back out with certain modifications

sed ‘s/D/A+/g’ < grades.txt
(Changes all “D” to “A+” in grades.txt on all lines and
spits it to stdout.)
sed ‘s/John/Jeff/’ < roster.txt
(Changes “John” to “Jeff” once per line in roster.txt.)
sed ‘s/\([^]+\) your \([^]+\)/
\2\1er/g’ < insults.txt
(Changes e.g. “fail your test” to “testfailer” in
insults.txt.)

Regular Expressions

• Regular expressions can be used with grep
and sed (next slide!)

• A superset of the wildcard system you
learned before (?/*)

• It’s best to teach by example, so...

Regular Expressions

• Find all lines that contain “what/What”
[wW]hat

• Find all lines that start with “x” and end
with a number or a lowercase letter
followed by any character
^x.*[0-9a-z].$

• Find all lines that have no whitespace:
^\S+$

Regular Expressions

• You can use these expressions in sed(1) for
substitution: s/regex1/regex2/

• You can use these expressions in egrep(1)
for matching: egrep “regex1” < file

• This has just been a really brief overview,
but they’re super powerful.

• See http://www.ternent.com/tech/
regexp.html for more.

xargs(1)

• Trying “rm *” in a huge directory or “rm
$(<deleteme.txt)” with a huge file will give
“command list too long”!

• Instead: xargs rm < deleteme.txt or
find . | xargs rm -f (achtung!)

• If your files have names with spaces?
find . -print0 | xargs -0 rm -f

find(1) power user!

• The find command can do way more than
just find all the files in a directory. It has
predicates!
find -iname “TeSt.TxT” -and -type f
Finds files called test.txt with case insensitivity
find -not -name “meh” -or -type d
Finds directories... or anything not named meh (case
sensitive.)

• Consult the manpage for more predicate
goodness.

