
System Administration Decal
Intermediate Lab #2
September 16, 2008

Introduction
 This week we covered the layout of a Unix filesystem and learned about the
various types of files that are commonly seen on Unix: regular, device, directory, and
FIFO (named pipe.) We’re going to build on these ideas and learn a little more about all
of these things.

Things to remember:

• Send your responses to joshk.decal@triplehelix.org; text format is preferred.
• Remember to include your cs198-XX username with your submission.
• If you don’t have a Linux environment at home, SSH to

ilinux1.eecs.berkeley.edu using your cs198-XX username.
• Finally, remember that the slides, man pages, and Google are your friends.

I. Filesystems upon Filesystems
 One thing that is special about Unix is that the filesystem is device agnostic. This
means that you can browse through the filesystem, and /home could be on one hard drive
while /boot is on another. Contrast this to Windows where different drives have
completely isolated filesystems, differentiated by drive letters. Here, we’ll take a look at
this concept of mounting other filesystems on top of your root filesystem in Unix.
 First, log in to ilinux1, as a normal user.

1. Run df –h at the command line. What does this command do? What can you say
about where your home directory is stored? Is it on the machine you’re logged into? If
not, where is it?
2. How can you tell whether a particular mount is a network share or available from
a hard drive connected to the computer? Feel free to guess.
3. Use the output of df –h to figure out on what physical (or network) filesystem each
file resides, on ilinux1. Bonus points (as if these homeworks are graded for quality,
right?) if you can explain what the files in a-c represent. (They all actually exist on
ilinux1.)
 a. /boot/vmlinuz-2.6.25.14-69.fc8
 b. /var/lib/rpm
 c. /usr/bin/Xorg
 d. Your home directory

II. The /proc Filesystem
 A notable filesystem amongst those that are mounted on top of your root filesystem
is the /proc filesystem. This is a special filesystem that is provided by the kernel that
doesn’t actually use any disk space – it is all in memory. Its purpose is to provide
information about processes and allow you to twiddle some internal knobs within the
kernel.
 The proc(5) manpage on a Linux box can assist you throughout this problem.

1. Use the ps command to find a process that you own. Try to look it up in /proc and
describe what it tells you about that process.
2. Use the ps command with an argument that lets you see other people’s processes
(what is it?) Choose a process that is not yours and try to examine it in /proc. What
happens?
3. Use the output of ls –l in /proc to explain your answer for #2 more clearly.

(Hint: The two username-looking entries in the output of ls –l represent who owns the
file, and which group co-owns the file, respectively. To the left of that is the permission
listing for the file, representing whether users, groups, or anyone else can read, write or
execute the file. If this isn’t clear, don’t worry about it. We will go over it in detail next
week.)

4. What is /proc/kcore? What happens when you read it? Do you think it’s a good
idea for the behavior to be this way? Why or why not?
5. Check out /proc/net/dev. Try to understand the table it provides – you may need
to widen your terminal window to view it correctly. Find a way to use the watch
command (look it up!) to provide a running update of its output.
6. /proc/self is really special. What does it do? What feature of the filesystem does it
use to accomplish its task? Again, use ls –l to examine it.

III. Device Files – The /dev Directory
 Now we’ll take a brief look at device files, which are all located in /dev. Have
http://www.lanana.org/docs/device-list/devices.txt open in a browser window for this
exercise.

1. Look through /dev and find a way to redirect the output of a process to standard error
using a file in /dev.
2. Check out the /dev/zero and /dev/full files. How are these similar to /dev/null? (It’s not
because “full” is only one letter away from “null”.)
3. Use df –h to figure out the root partition for the machine you’re on. Try cating it.
Why can’t you do it, and why is it good that you (as a normal user) can’t?
4. Use ls –l to look through /dev. Why aren’t there any file-sizes present? What
replaces them in the output of ls? (Hint: Research the mknod command.)

