
The Shell

Joshua Kwan
System Administration DeCal

February 20, 2008

ls

pwd

cat cpmv

tee

cd

find

locate

awk

sed

xargsless

bash



What is the shell?

 A program; your gateway into any Unix system

 Allows you to inspect, manipulate, add/remove 
files and parts of the system

 Allows you to run other programs and control 
how they run

 A compact programming environment to allow 
automation of many tasks (viz. DOS batch files)



Diving in: Basic Commands

Demonstration of:

cd – change directory
ls – list directory

pwd – show current directory
(Print Working Directory)

mkdir – create an empty directory
rmdir – remove an empty directory



Review

 First checked to see where we were (pwd)

 Created a 'friends' directory (mkdir)

 Entered that directory (cd), created 
subdirectories of 'friends'

 Deleted the 'calvin' subdirectory (rmdir)

 Went back to our home directory (cd)



Looking for Things: find, grep, locate
 grep – used to search within files for certain 

patterns (regular expressions)
grep Josh roster.txt

 find – used to find files within a directory 
structure
find . –name ‘important.txt’

 locate – quick but not necessarily up-to-date 
file search (indexed every 24 hours)
locate my-brain.dat



Moving Things Around: cp, mv, rm
 cp – Used to copy one file to another location, 

or just a different name.
cp people.txt persons.txt

 mv – Used to move a file to another location or 
to rename it.
mv old-records.txt new-records.txt

 rm – Used to delete a file.
rm incriminating.txt



More programs...
 Your homework will involve the use of programs 

you’re not familiar with.
 When you want to figure out how to use a 

program, man it!

                        man chmod
 Also, almost all programs have command line 

options.
 Like “ls -l”; the “-l” option will be documented in 

the man page. 7



Wildcards and Questionmarks
 You’ve probably heard of “rm -rf *” - if you’re 

older, maybe “DEL *.*”? What’s it do?
 Using “*” in a command line will match all the 

files in the current directory.
 You can put * next to other letters, so you can 

match all files starting with “ABC” with “ABC*”
 ? is like *, but only matches 1 character
 a?b?c will match against axbxc, but not axxbxc

8



The UNIX Paradigm
 Similar to the RISC vs. CISC ideology

 Write small programs with small purpose and 
chain them together, vs. huge programs that do 
just one thing

 The shell makes this chaining possible with its 
most powerful feature: the pipe (‘|’)

 … Put that in your pipe and smoke it!



Pipes (a.k.a. Cool Stuff)
 Pipes are a way to chain the output of one command 

into the input of another

 For example, you can grep the output of ls or find or 
anything you want!

 Or.. You can ls the output of grep! Anything goes. It 
just won’t necessarily do anything.

 If you have a Mac, this is the idea upon which 
Automator is based.



Impressive Pipe Examples

Convert all WAV files in a directory to OGG
find | grep ‘.wav$’| xargs oggenc

Count how many lines a text file has
cat jonathan.txt | wc –l

Get the file size of every file in a directory by 
using ls verbose options

ls -l | awk '{print $5 $8}'



Output Redirection
 Running programs can relay output to the 

screen via two channels: standard output and 
standard error

 The shell lets you control the flow of these 
using > and 2>

 Log the output of a program to prog.log and 
errors to error.log:
someprogram >prog.log 2>error.log



Input Redirection
 Many UNIX-type programs wait for input; they 

read from “standard input”, by default keyboard 
input.

 So you can pipe things to them, or redirect their 
input from something.

frobnicate < foobar.txt
cat foobar.txt | frobnicate

 You can also type input in by hand, and then hit 
Control-D to send the ‘end of input’ character.



/dev/null
 A special file on the system that contains 

nothing and ignores what you write to it!

 Thus: to discard the output of a program, 
redirect it to /dev/null!

 Or, to explicitly pass no input to a program that 
waits for input, redirect its standard input 
FROM /dev/null!



Shell Programming
 The bash shell supports some basic programming 

constructs, e.g. for, while, if-then
 Use in tandem with shell commands to do really cool 

stuff!
ls friends | while read person; do

  if [ “$person” = Iris ]; then

   echo “$person is unusually cool!”

 else

   echo “I really like $person! <3”

 fi

done

 We won’t be focusing too much on shell scripting, 
unless y’all want to.



Substitution
 Sometimes, you want to substitute the output of 

one command into the command line of another
 Or, insert the contents of a file into a command 

line. This can be done with substitution
rm $(locate .avi)

rm $(<files-to-delete.txt)

 Be careful! The output might not be what you 
expected and you could delete the wrong thing.. 
rm -rf $(echo /)


