
The Shell

Joshua Kwan
System Administration DeCal

February 20, 2008

ls

pwd

cat cpmv

tee

cd

find

locate

awk

sed

xargsless

bash

What is the shell?

 A program; your gateway into any Unix system

 Allows you to inspect, manipulate, add/remove
files and parts of the system

 Allows you to run other programs and control
how they run

 A compact programming environment to allow
automation of many tasks (viz. DOS batch files)

Diving in: Basic Commands

Demonstration of:

cd – change directory
ls – list directory

pwd – show current directory
(Print Working Directory)‏

mkdir – create an empty directory
rmdir – remove an empty directory

Review

 First checked to see where we were (pwd)

 Created a 'friends' directory (mkdir)

 Entered that directory (cd), created
subdirectories of 'friends'

 Deleted the 'calvin' subdirectory (rmdir)

 Went back to our home directory (cd)‏

Looking for Things: find, grep, locate
 grep – used to search within files for certain

patterns (regular expressions)
grep Josh roster.txt

 find – used to find files within a directory
structure
find . –name ‘important.txt’

 locate – quick but not necessarily up-to-date
file search (indexed every 24 hours)
locate my-brain.dat

Moving Things Around: cp, mv, rm
 cp – Used to copy one file to another location,

or just a different name.
cp people.txt persons.txt

 mv – Used to move a file to another location or
to rename it.
mv old-records.txt new-records.txt

 rm – Used to delete a file.
rm incriminating.txt

More programs...
 Your homework will involve the use of programs

you’re not familiar with.
 When you want to figure out how to use a

program, man it!

 man chmod
 Also, almost all programs have command line

options.
 Like “ls -l”; the “-l” option will be documented in

the man page. 7

Wildcards and Questionmarks
 You’ve probably heard of “rm -rf *” - if you’re

older, maybe “DEL *.*”? What’s it do?
 Using “*” in a command line will match all the

files in the current directory.
 You can put * next to other letters, so you can

match all files starting with “ABC” with “ABC*”
 ? is like *, but only matches 1 character
 a?b?c will match against axbxc, but not axxbxc

8

The UNIX Paradigm
 Similar to the RISC vs. CISC ideology

 Write small programs with small purpose and
chain them together, vs. huge programs that do
just one thing

 The shell makes this chaining possible with its
most powerful feature: the pipe (‘|’)

 … Put that in your pipe and smoke it!

Pipes (a.k.a. Cool Stuff)
 Pipes are a way to chain the output of one command

into the input of another

 For example, you can grep the output of ls or find or
anything you want!

 Or.. You can ls the output of grep! Anything goes. It
just won’t necessarily do anything.

 If you have a Mac, this is the idea upon which
Automator is based.

Impressive Pipe Examples

Convert all WAV files in a directory to OGG
find | grep ‘.wav$’| xargs oggenc

Count how many lines a text file has
cat jonathan.txt | wc –l

Get the file size of every file in a directory by
using ls verbose options

ls -l | awk '{print $5 $8}'

Output Redirection
 Running programs can relay output to the

screen via two channels: standard output and
standard error

 The shell lets you control the flow of these
using > and 2>

 Log the output of a program to prog.log and
errors to error.log:
someprogram >prog.log 2>error.log

Input Redirection
 Many UNIX-type programs wait for input; they

read from “standard input”, by default keyboard
input.

 So you can pipe things to them, or redirect their
input from something.

frobnicate < foobar.txt
cat foobar.txt | frobnicate

 You can also type input in by hand, and then hit
Control-D to send the ‘end of input’ character.

/dev/null
 A special file on the system that contains

nothing and ignores what you write to it!

 Thus: to discard the output of a program,
redirect it to /dev/null!

 Or, to explicitly pass no input to a program that
waits for input, redirect its standard input
FROM /dev/null!

Shell Programming
 The bash shell supports some basic programming

constructs, e.g. for, while, if-then
 Use in tandem with shell commands to do really cool

stuff!
ls friends | while read person; do

 if [“$person” = Iris]; then

 echo “$person is unusually cool!”

 else

 echo “I really like $person! <3”

 fi

done

 We won’t be focusing too much on shell scripting,
unless y’all want to.

Substitution
 Sometimes, you want to substitute the output of

one command into the command line of another
 Or, insert the contents of a file into a command

line. This can be done with substitution
rm $(locate .avi)

rm $(<files-to-delete.txt)

 Be careful! The output might not be what you
expected and you could delete the wrong thing..
rm -rf $(echo /)

