
System Administration Decal
Intermediate Lab #1
September 16, 2008

Introduction
 This week, we learned about the shell and various typical UNIX commands we
can use within the shell. Additionally, we explored some special features of the shell,
including output and input redirection, pipes, and substitution. In this lab, you will
practice these skills while learning even more about the shell, in a series of themed
exercises.
 Please email your responses to joshk.decal@triplehelix.org and remember that
you can always email me with questions about the lab. Remember to use the slides as a
resource for solving the exercises also.
 IMPORTANT: If you are using your cs198 account to do these exercises, use the
‘bash’ shell. The default shell used for Berkeley CS accounts is not adequate for many of
the idioms we have learned. You can start the bash shell after logging in with ‘exec bash’.
If you have a Mac, it uses bash by default.

I. Review of Basic Commands and Shell Idioms
 In a sentence or two, describe what each of the following command lines does
precisely. You may have to use “man” pages to look up what certain commands and
options do, as described in lecture. (You remember command-line options, right?) For
some commands that are built in to the shell, there won’t be any man pages, so you can
also use your CS lab account to try these commands out. Also, try removing the options
from the command lines to see what changes. Failing that, maybe Google will help you.

1. ls –l a???bc
2. rmdir * (Hint: rmdir’s exact behavior is not immediately obvious. Be careful.)
3. mkdir –p a/b/c
4. ls | grep ‘pookie’ | wc –l
5. mkdir $(<dirs)
6. find >file 2>/dev/null

II. The wget command
 The wget command is used to retrieve web pages and other files hosted on web
servers on a command-line interface. Familiarize yourself with this tool by issuing man
wget from a terminal to read its manual page. Then, answer these questions (the man
page is useful for many of these):

1. If you run wget on a URL, you will notice that it prints a lot of output, including a
text-based progress bar. Come up with at least two ways to inhibit its output,
either using the capabilities of the shell or by passing options to wget.

2. Figure out how to make wget print the contents of a URL to standard output. Use
this option to create a pipe sequence that searches www.cnn.com for the term
‘sports’.

3. What is special about the way wget prints its informational status messages /
progress bar? Hint: try using output redirection to hide one or more output
channels.

III. Exit codes
 In UNIX environments, all programs report whether they have failed or succeeded
when they terminate using an exit code. You might think of it this way: running a
program is like calling a function in a piece of code, and checking to see what its return
value is.

1. Find a way to display the exit code of the program that was last run in the shell
using Google (or your favorite search engine.) Using the Web to find answers is
instrumental even for seasoned sysadmins; it’s impossible to know everything off
the top of your head. In your answer, include the query you used and the web
page from which you got the answer.

2. Try using wget to download a URL that does not exist. Using your answer to #1,
determine what exit codes are commonly used for success and failure.

IV. Job Control
 The shell has the ability to manage many running programs at once, and stop and
continue them at your whim. In this section of the lab, you will learn how to control this
power. To begin, use your knowledge from exercise II to start downloading a large file
from somewhere. (A few megabytes is enough – you just need to buy yourself time.)

1. While it is downloading, hit Control and Z at the same time. (From now on we’ll
abbreviate this to ^Z; similarly Control + C will be ^C.) Clearly describe what
happens.

2. Hitting ^Z will return you to a prompt. Describe the output of the jobs command,
and then try using the fg or bg commands. Figure out what all three of these do
and how they pertain to job control. You shouldn’t need a search engine to do this.
Just experiment!

3. Use this procedure to run at least three programs at once. Supply the output of the
jobs command when this is happening.

4. Now start your download again, but this time interrupt it using ^C. Compare the
behavior of ^C and ^Z.

5. Every time we have run programs up until now, they have started in the
foreground (i.e. you are not returned to a prompt immediately.) Find a way to start
a program in the background.

