
1

The Shell

Joshua Kwan
System Administration DeCal

February 20, 2008

ls

pwd

cat cpmv

tee

cd

find

locate

awk

sed

xargsless

bash

What is the shell?

� A program; your gateway into any Unix system

� Allows you to inspect, manipulate, add/remove
files and parts of the system

� Allows you to run other programs and control
how they run

� A compact programming environment to allow
automation of many tasks (viz. DOS batch files)

Diving in: Basic Navigation

Demonstration of:

cd – change directory
ls – list directory

pwd – show current directory
(Print Working Directory)

mkdir – create an empty directory
rmdir – remove an empty directory

Review

� First checked to see where we were (pwd)

� Created a 'people-i-like' directory (mkdir)

� Entered that directory (cd), created
subdirectories of 'people-i-like'

� Deleted the 'calvin' subdirectory (rmdir)

� Went back to our home directory (cd)

Looking for Things: find, grep,

locate

� grep – used to search within files for certain
patterns (regular expressions)
grep Josh santas-naughty-list.txt

� find – used to find files within a directory
structure
find . –name ‘present.txt’

� locate – quick but not necessarily up-to-date

file search (indexed every 24 hours)
locate my-brain.dat

Moving Things Around: cp, mv,

rm

� cp – Used to copy one file to another location,
or just a different name.
cp people.txt persons.txt

� mv – Used to move a file to another location or
to rename it.
mv old-records.txt new-records.txt

� rm – Used to delete a file.
rm incriminating.txt

2

The UNIX Paradigm

� Similar to the RISC vs. CISC ideology

� Write small programs with small purpose and
chain them together, vs. huge programs that do
just one thing

� The shell makes this chaining possible with its
most powerful feature: the pipe (‘|’)

� … Put that in your pipe and smoke it!

Pipes (a.k.a. Cool Stuff)

� Pipes are a way to chain the output of one command

into the input of another

� For example, you can grep the output of ls or find or

anything you want!

� Or.. You can ls the output of grep! Anything goes.

� If you have a Mac, this is the idea upon which

Automator is based.

Impressive Pipe Examples

Convert all WAV files in a directory to OGG

find | grep ‘.wav$’| xargs oggenc

Count how many lines a text file has

cat jonathan.txt | wc –l

Get the file size of every file in a directory by

using ls verbose options

ls -l | awk '{print $5 $8}'

Output Redirection

� Running programs can relay output to the
screen via two channels: standard output and
standard error

� The shell lets you control the flow of these using
> and 2>

� Log the output of a program to prog.log and
errors to error.log:
someprogram >prog.log 2>error.log

Input Redirection

� Many UNIX-type programs wait for input; they
read from “standard input”, by default user
input.

� So you can pipe things to them, or redirect their

input from something.

frobnicate < foobar.txt

/dev/null

� A special file on the system that contains
nothing and ignores what you write to it!

� Thus: to discard the output of a program,
redirect it to /dev/null!

� Or, to explicitly pass no input to a program that

waits for input, redirect its standard input FROM
/dev/null!

3

Shell Programming

� The bash shell supports some basic programming
constructs, e.g. for, while, if-then

� Use in tandem with shell commands to do really cool
stuff!

ls people-i-like | while read person; do

if [“$person” = Iris]; then

echo “$person is unusually cool!”

else

echo “I really like $person! <3”

fi

done

Substitution

� Sometimes, you want to substitute the output of
one command into the command line of another

� Or, insert the contents of a file into a command

line. This can be done with substitution

rm $(locate .avi)

rm $(<files-to-delete.txt)

