
System Administration for Beginners

Week 3 Notes

September 29, 2008

1 Review

1.1 Logging In

The desktop environment you are using, if you logged in using default settings,
is rather slow and not exactly the best environment to do work with. Before you
log on to the machine, click on the “Session” button and select “Java Desktop
Environment”. This GUI is a bit easier to work around with and may look a
bit familiar with other operating systems that you have seen.

Although there are many tools and options available through the GUI, try to
exclusively limit yourself to the terminal when entering commands and opening
up programs. This will serve as good practice on the command-line; most of
the time a system administrator will be working with a command-line instead
of a GUI.

1.2 Review of Basic Commands

By now you should be familiar with what some of the basic commands that deal
with file and directory manipulation. Using the command-line, you should also
be able to start programs (like a web browser) and terminate them by choosing
the correct process from a list. Although you may not remember exactly what
each command does, you know the appropriate commands and the resources to
look up what something does.

1.3 Review of UNIX File Permissions

Last week’s laboratory covered briefly on the concept of UNIX file permissions.
It is extremely important that you understand file permissions because they are
one of the pillars of UNIX security. If file permissions are incorrectly set, you
will expose your data to malicious users which could result in the compromise
of your system.

On UNIX-based systems, there are three types of permissions you can grant:
execute, read, and write. These permissions are represented by the numerical
values 1, 2, and 4, respectively. These enumerated values make it easy to grant

1



a combination of permissions by simply adding up the values for the permissions
that you want to grant and assign the resulting value as the permission.

For example, to grant write and read permissions, you would assign 2+4 = 6
as the permission. The maximum value of a permission is 7 (execute, read, and
write) and the minimum value is 0 (none at all).

Each file in UNIX has three categories of permissions associated with it:
owner, group, and other. You can set permissions independently for each of
these categories of users.

You set permissions by using chmod with a group of 3 numbers representing
the permissions for the owner, group, and world, respectively. For example, to
grant all permissions to the owner, read, and execute permissions to the group,
and no permissions to everyone else, you would use the following command:

chmod 750 some file

To help familiarize yourself with permissions, today’s lab will have some
exercises dealing with file permissions.

2 UNIX Tools for System Administrators

2.1 Filesystem Tools

2.1.1 Links

A useful filesystem feature that is present in practically all UNIX-based oper-
ating systems is the link. A link is merely a pointer to another file or directory
that is virtually indistinguishable from the original file. In this way, a UNIX
link can be considered a much more powerful version of a Microsoft Windows
shortcut.

There are two types of links: hard and soft. The difference between the two
is primarily technical (if interested, however, you may look up its man page) and
is not very important at the moment. For now, always use symbolic links.

The command to create a link is ln. To create a symbolic link, you also
need to specify the -s parameter:

ln -s original file link to file

To unlink files, use unlink on the link.

2.1.2 tar

In the old days of UNIX, backups were performed using cassette tapes. While
that technology has been replaced with more reliable means of performing back-
ups, the commands that interfaced with the tapes are still present in UNIX-like
operating systems. One such command is tar.

tar is similar to Windows-equivalent of WinZip or WinRAR. They package
files together into an archive that can be easily transferred over the Internet, or,

2



originally, onto tape media. Unlike WinZip and WinRAR, however, tar does
not compress the data it archives – it merely combines them together into one
package.

Many programs are available for UNIX-like systems are distributed in tar
archives. Sometimes these archives are independently compressed using another
program such as gzip or bzip2. You can use tar to package the contents of a
directory into a single file that you can copy to removable media. To create a
tar archive of a certain directory, use the following syntax:

tar -cf archive.tar directory to archive/

To extract a tar archive:

tar -xf archive.tar

To list the contents of an archive:

tar -tf archive.tar

2.1.3 Various Filesystem Tools

du determine the amount of disk space being used by a directory.

du -h some directory/

gzip compress and decompress files using the gzip (.gz) algorithm.

gzip file to compress
gzip -d compressed file.gz

bzip2 compress and decompress files using the bzip2 (.bz2) algorithm

bzip2 file to compress
bzip2 -d compressed file.gz

2.2 Command-Line Tools

2.2.1 Pipes

One of the reasons for UNIX’s success was its innovative features. The pipe
is one of these innovative features that we can use to make life easier. In a
nutshell, a pipe is a tool that takes the output of one command and feeds it as
the input to another command. You create a pipe by using the | character.

For example, suppose you used the du command to list the disk space used by
a large directory with many sub-directories. There may be so much output that
your terminal scrolls for some time; using the scroll bars on the terminal may
not be an option as the output is truncated at the top. Rather than allowing
your terminal to scroll uncontrollably, you can pipe the output of du to the

3



input of less. Recall that less is used for reading text files. To create the pipe
that connects the output of one command to the input of another, you would
type the following into the terminal:

du some directory/ | less

2.2.2 Redirecting Output

Using the pipe was a way of redirecting output; instead of displaying the output
on the screen, we took it and sent it directly into the input of another command.
In some cases, we want to save the output in a file. For example, you may want
to save the output of a command as a log for future analysis. To redirect the
output of a command from the terminal to a file, you use > or >>. You use one
greater-than symbol (>) when you want to redirect the output of a command to
a file and overwrite the file’s contents. You use two greater-than symbols (>>)
when you want to redirect the output of a command to a file by appending it to
the end. For example, to redirect the output of du to a file named du output,
you would use the following command:

du some directory/ > du output

2.2.3 screen

System administrators often need to use multiple terminals at the same time.
Rather than opening many terminal windows, they use screen. screen allows
system administrators to create multiple virtual terminals that they can switch
between using key combinations.

Besides having the ability to create multiple terminals in one, screen also
has the ability to detach from a terminal and reconnect to it later. For example,
if you ran a command that would take a very long time to complete, you would
not be able to logout of the system because the system would kill the process
as you logged out. You can get around this by using screen: you start screen,
execute your command, and detach. Once detached, you can logout of the
system and your process will continue running. Whenever you want to check
on the progress of your process, you can re-attach to your screen.

It is not necessary for you to use screen. It is, however, a very useful tool
that many system administrators use on a daily basis, so we recommend that
you try it out. Since screen maintains a persistent state even after you have
logged off, you can keep your work “saved” for later when you disconnect. The
following is a quick list of screen commands; please read the man page if you
want to learn the rest:

• ctrl-a c – create a new screen

• ctrl-a k – kill current screen

• ctrl-a n – move to next screen

• ctrl-a 0 – show a listing of all screens

4



2.2.4 Various Command-Line Tools

history display the commands you’ve entered
clear clears your display

2.3 Tools You Definitely Need to Know

2.3.1 SSH

The Internet is a very dangerous place. On the outside, most people are oblivi-
ous about the dangers when connecting wirelessly. Hackers can easily monitor
your web sessions; especially over a wireless Internet connection. Consequently,
system administrators try to use encrypted network tools whenever possible.

A Secure Shell client, or SSH, is a network tool for remotely logging into a
remote system. It is the tool that you would use to connect to the computers
here at Soda Hall using your home computer. If you have an OCF account,
you can use SSH to connect to the systems at the OCF using the following
command:

ssh your login@ocf.berkeley.edu

If you do not yet have your OCF account, you can use SSH to login to your inst
account using the following command:

ssh cs198-XX@solar.cs.berkeley.edu

You might get a warning about encryption keys. If prompted, input ‘yes’
and continue. If your login is successful, you will have opened a shell into your
OCF account. Any commands you execute in the shell will execute directly on
the OCF’s computers and it’s output, depending on how it is redirected, will
display on your terminal. When finished, you may disconnect at any time using
the command exit to exit out of the shell.

SSH also includes some tools for transferring files between computers over
an encrypted connection: sftp and scp. sftp is very similar to File Transfer
Protocol (FTP), which some of you may have used to upload webpages or files,
and uses the same syntax as ssh. scp is like a network version of cp. To copy
a file from your inst account to your OCF account, use the following command:

scp file to copy login@ocf.berkeley.edu:some path

The text after the colon in the last argument to scp specifies either an absolute
or relative path to the directory in which you want to store the file. If unspec-
ified, it automatically defaults to your home directory, but be sure to always
include the colon. Otherwise, it will simply act like cp by creating a file called
“login@ocf.berkeley.edu”.

5



2.3.2 Various Useful Commands You Need to Know

grep search text for a specific string

cat some file | grep look for this

find search for files

find . -name document.txt -print

tail print out the last 10 lines of a certain file

tail very long log
tail -n 20 some log
tail -f another log

uptime shows how long the system has been on and the current load

who show who is logged into the system

w shortcut for who and uptime

last show the last few logins on the system

2.4 Other Useful Tools

2.4.1 rsync

rsync is a tool for mirroring files and directories across two systems. It is
primarily used as a backup tool, but it can be used for all sorts of operations
where it is necessary to keep two sets of data in sync.

A remarkable feature of rsync is that it will intelligently detect which files
have been modified and only transmit the modifications to the receiving server,
resulting in a significant reduction in bandwidth transfer required for an update.
rsync also support encryption as well as on-the-fly encryption.

Though the details will not be discussed here, an important piece of advice
is to pass the -n parameter when running rsync for the first time on a direc-
tory; this will run through the process but will not actually do anything. By
performing a dry-run, you can review the operations, analyze the output, and
make corrections to the parameters if necessary.

2.4.2 lynx

lynx is a command-line browser. It is rather useful when you need to look up
information quickly and you know where to go. Modern command-line browsers
have image capabilities, but most will display only text.

6



3 Connecting from Home

To connect to the computers at Soda Hall or the OCF using your home com-
puter, you will need to obtain an SSH client. If you are using Microsoft
Windows, you can download the SSH Secure Shell program from the website
http://software.berkeley.edu. An excellent alternative for Windows users
is the PuTTY SSH client. Mac OS X users should have an SSH client already
built in; look for the Terminal under “System” .

Regardless of which SSH client you use, you will need the following informa-
tion: a hostname and a login name. To connect to the computers at Soda Hall,
you can use solar.cs.berkeley.edu. Your login name is the inst account you
received (cs198-XX). To connect to the OCF, the hostname and login name are
generally different: you’ll want to use ocf.berkeley.edu as the host name and
the login name you choose when signing up for your account.

Once you’ve connected, your client will ask for your account password. Type
it in. If your login is successful, you should have a shell open to either your inst
or OCF account. Any commands you type into this shell should work just as if
you were physically in Soda Hall and executing them on the computers here.

There is on drawback, however. Unless you have setup your own X server
at home, any programs that require a GUI will not work. For example, if you
attempt to start Firefox using your shell, you will probably get an error.

The choice of server you want to connect to is ultimately up to you. Both
of your accounts are restricted in a sense that you do not have full control of
the system; you might find, however, that the OCF provides more access to
different programs and utilities that the instructional labs do not. We will soon
deal with account types and permissions in the upcoming weeks.

7


