
Advanced Unix System Administration

Fall 2008

Project 1

This project is due by 11:59 PM on Monday, November 3, though depending
on how things go, an extension may be offered. Writeups should be sent via email to
<sluo+decal@ocf.berkeley.edu>; project setups need to be complete by this time.

Half of your project grade is the quality of your setup; half of it is the quality of your
writeup. Document all the steps you take in setting things up, even if only briefly. Where
you make a choice on how something should be set up, explain the rationale for that
decision.

Because of the way the virtual containers for this project are set up, I don’t have a
way of logging in to them unless you give me access. Therefore, please leave the root
password to your container in a file in your login server home directory (don’t forget to
set appropriate permissions!) and note the location of this file in your writeup.

You may work in groups of up to three, though groups of two are preferred. I ex-
pect one writeup per group. Please let me know by Friday, October 23 whom you
will be working with; if you don’t let me know by that time, I will assume you will
be working alone and will create VMs accordingly. Feel free to use the class mailing list
(<sluo+decalfa08@ocf.berkeley.edu>) to find a partner, if you’d like.

Scenario

You are the lead system administrator for Foobar Software Solutions, Inc., a company
distributing and providing support for Linux distributions which are enhanced versions of
the products of other leading Linux vendors. Your company is small, but the quality of its
support and its cut-rate prices mean that it is growing in popularity rapidly. With growth,
of course, comes growing pains; your computing infrastructure is straining to handle the
load placed on it, and your low-cost business model means no money for getting new
hardware anytime soon. (Rumors are floating around that management is negotiating a
big contract with a Tier 1 server vendor, but even if that pans out, it’ll be a few quarters
before the money really starts rolling in.)

1



Tasks

1. Back in the days when the company was based in a garage, development was mostly
done on personal laptops, and ad-hoc arrangements were made for source code man-
agement. This hasn’t scaled well as the company has grown, so you’ve been asked
to set up a central development box with source code version control infrastructure.

a. Begin by installing Linux on the designated machine. (You have a virtual
machine for this purpose; see the notes below for some instructions.) Configure
the system as you see fit, with an eye towards stability, performance, and long-
term maintainability of the setup. Make sure you install some development
tools; having make and compilers would be a good start.

b. Set up some user accounts on the system. They fall roughly into two different
categories: developers, who need full access to the system’s resources; and
other staff, who need to be able to see what the developers are doing, but
should have their permissions restricted. At a minimum, configure appropriate
process limits, memory limits, and disk quotas for non-developer accounts; for
more credit, configure other appropriate resource limits.

2. As part of the campaign to restructure your developers’ workflow, you’ve been asked
to evaluate some version control systems on the basis of performance. (Don’t worry
about feature set; the developers are still figuring out their new workflow, and
hopefully management will choose a system that accommodates their needs . . . )

a. Install at least two of Subversion, Git, and Mercurial on the system. Using a
copy of the Linux kernel source, benchmark some common operations with each
system: initially importing a source code tree, checking out a working copy,
and checking in changes, at least. (The more ambitious may try comparing
merges and other more complex operations.) Identify the bottleneck(s) in
each operation, and suggest appropriate performance improvements. (For more
credit, implement some of these suggestions.)

b. For each system, document for your developers how to set up access control
on a source tree, so that only certain developers have commit privileges, but
everyone may check out a copy.

c. As part of your corporate commitment to open source, management has de-
cided that your version control system’s contents should be available to the
world. For each version control system you set up, configure remote anony-
mous access via the standard client, and set up a web interface. Benchmark

2



the performance of anonymous checkouts and browsing using the web interface,
identify the bottleneck(s), and suggest appropriate performance improvements.

d. Based on your findings, suggest hardware upgrades which would give the com-
pany the best value for its money.

3. One of your customers has filed the following bug report against your Debian etch
derived product, DebianFoo Linux:

“When I set LogLevel DEBUG in my OpenSSH configuration on DebianFoo, I don’t
see any details of what’s happening during an attempt to log in, just whether the
attempt succeeded or failed. On some of my other systems, such as my OpenBSD-
based router or my Debian Lenny system, LogLevel DEBUG shows me details of
the connection handshake and authentication process for each connection, not just
whether login succeeded. In both cases, my OpenSSH and syslog configuration is the
default shipped with the system, except that of course I’ve changed the LogLevel

setting to DEBUG.

“This is an extremely useful feature for figuring out what’s going wrong with logins,
so it would be nice if it worked on DebianFoo.”

As you’re the resident sysadmin guru and troubleshooting expert, and your front-
line support folks are stumped, you’ve been tasked to resolve this bug report. Find
out why the debug logging the customer wants isn’t working, and how to get it to
work.

Note: You’re installing Debian Lenny on your project systems. Your homework
VMs run Debian Etch.

System Setup Details

For this project, you have the use of a Xen “domU”, which in most respects behaves like
an actual physical system. Each domU is configured with 256 MB of RAM and one 10
GB hard disk (I realize this wouldn’t exactly be high-end hardware if it were real, but we
don’t have quite enough resources on the host system to increase these figures). You may
use any network addresses in the range 10.20.10.x0-10.20.10.x9, where x your group
number. The netmask to use is 255.255.255.0, the default gateway is 10.20.10.1, and
your DNS servers are 192.58.221.242, 128.32.136.9, and 128.32.206.12.

To access the domU console, SSH in to coupdetat.ocf.berkeley.edu port 2022 with
your group’s username and password. You will be presented with a menu from which you

3



can boot, shut down, or reboot the system, attach to its console, or boot the Debian
installer.

A few hints on installing the operating system:

• linux.csua.berkeley.edu is on campus, and therefore by far the fastest Debian
mirror for this installation.

• DO NOT forget the root password for your system! It takes a great deal of work
to reset it. Remember that you need to give me the root password for the system,
so don’t set a password that you use for any other purpose.

• The VM setup assumes that your GRUB configuration is in /boot/grub/menu.lst

on the first partition of your hard disk. If you’re using a separate /boot partition,
this means that it needs to be the first partition, and you may need to create a
/boot symlink pointing to the partition root to get the GRUB menu to show up.

• Take the option to install GRUB to the MBR (which is the default).

• For performance reasons, it’s recommended that you install the libc6-xen package
and reboot after it’s installed.

4


