

Advanced Unix System
Administration

Lecture 5
September 29, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Shared Libraries

● The dynamic linker
– Binaries have a “symbol table” containing

functions, etc. and their locations
– Dynamic binaries have tables with blanks –

it's the responsibility of the dynamic linker to
resolve these

– Linker loads listed dynamic libraries and tries
to resolve the symbols

– Allows shared code, but incurs a performance
penalty on most architectures

Shared Libraries

● Binary compatibility
– Programs expect the “ABI” offered by a

shared library to stay the same (structs,
function prototypes, etc.)

– When this assumption breaks, things go
horribly – or worse, subtly – wrong

– Hence mechanisms for versioning shared
libraries and symbols

The Unix Permissions Model

● Users and groups
– Users and groups have numeric IDs

associated with them
– Groups can contain multiple users, or no

users at all

● Process credentials
– Each process has a set of credentials

associated with it
● Real user ID: set to the UID executing the process

at the beginning of the execution
● Real group ID

The Unix Permissions Model

● Process credentials con't
● Effective user ID: the UID used for most

permissions checks
● Effective group ID
● Saved set-user-ID: used for flexibility in setuid

applications
● Saved set-group-ID

– Note that access control is always by
user/group ID number!

– Behavior can be very system-dependent –
see the documentation, or try examples

The Unix Permissions Model

● File permissions
– Files have a user/group ID associated with

them
– File permission bits: binary mask usually

written as 4-digit octal
● High digit: 1 = sticky, 2 = setgid, 4 = setuid
● 2nd digit: 1 = user execute, 2 = user write, 4 =

user read
● 3rd digit: 1 = group execute, 2 = group write, 4 =

group read
● 4th digit: 1 = other execute, 2 = other write, 4 =

other read

The Unix Permissions Model

● File permissions con't
– Directory permissions:

● High bit: 1 = deletion restricted, 2 = files created
will have group set to directory's group

● Execute bits mean permission to cd in

– Access control is by the process's effective
IDs

● On Linux, there is a set of filesystem IDs, almost
always equal to the effective UID

– umask
● Bits set in umask are masked out in permissions

for newly created files

The Unix Permissions Model

● POSIX draft ACLs
– Allow the addition of extra user and group

permissions entries
– A “mask” is set on each file and is ANDed

with each ACL entry to determine effective
permissions

● NFSv4 ACLs
– Provide very granular (and different!)

permissions based on a linear allow/deny list
– More flexible, more difficult to deal with
– Has some compatibility issues (umask, ...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

