

Advanced Unix System
Administration

Lecture 3
September 22, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Processes

● Threads
– Recall that the kernel keeps lots of state for

each process
– But if the processes are related, we might be

able to get away with less of that
– Threads = “lightweight processes”
– Shared resources means programming is

more difficult
– Kernel support for threads reduces overhead

and makes implementation easier

Memory Management

● Usually, an n-bit processor can address n
bits of memory

● Especially on 64-bit systems, this tends to
be much more memory than actually
exists on the system

● Besides, the physical address of a
particular byte may not be a particularly
convenient way to work with it

Memory Management

● Solution: paged memory, virtual memory
– Divide up physical memory into pages

(usually 4K or 8K) and keep track of pages of
memory

– Keep a page table of pages and the memory
addresses used to access them

– Creates more flexibility: per-process virtual
address space, non-contiguous allocations,
shared memory, etc.

Memory Management

● Virtual memory
– As long as the information stored at the

address can be retrieved somehow, there's
nothing wrong

– We can map pieces of disk storage (whether
swap or memory-mapped files) to an address

– This is slow, so we can also (and where
possible, usually do) keep a copy in physical
memory

– When demand spikes, we can quickly drop
pages backed by non-volatile storage

Memory Management

● Caching VMs
– RAM is much faster than disk, so keeping info

in RAM will speed up many tasks
– Some kernels (i.e. Linux) will cache file

accesses in “free” memory
– Again, pages can be dropped quickly if

memory pressure arises – though this may
not always be profitable

– Mantra: (truly) free memory is wasted
memory

Memory Management

● Memory use from user space
– Each process sees its own private virtual

address space
– Code is mapped into memory from disk
– A few pages are mapped for local storage as

the stack – this grows as needed
– Process can explicitly request memory from

the heap using malloc() – though this can be
lazy!

– Files can be mapped into memory using
mmap()

Memory Management

● Efficient VM operation
– Kernel must keep track of many things about

pages:
● Which bits of disk and RAM correspond to an

address
● Whether the disk and RAM are in sync (dirty bit)
● Purpose of the allocation (data, code, mmap file,

cache)

– Ideally, the stuff that's in use and/or used
most often should stay in RAM even when
memory pressure strikes

Memory Management

● Efficient VM operation con't
– Without prescience, figuring out what's going

to be used next is a difficult art
– Getting it wrong is a very large performance

penalty
– Lots of different algorithms for doing this:

FIFO, random, NRU, LRU, NFU, aging;
performance varies by application

– All of the generally useful ones need to keep
track of when pages are used

Memory Management

● Fragmentation
– Kernel's keeping track of lots and lots of stuff

per page, so the fewer pages the better
– Keeping large allocations together means

less work for the kernel and faster allocations
– Some applications (i.e. DBs) actually need

contiguous blocks of physical memory
– Various strategies for keeping memory

allocations together

Memory Management

● Large pages
– Bigger pages means fewer pages, of course
– Advantage: less overhead for large

allocations, ensure contiguous physical
memory

– Disadvantages: difficult to allocate in
presence of fragmentation and/or memory
pressure, reduces flexibility

– Not fully supported by all OSes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

