Advanced Unix System Administration

Lecture 15 November 5, 2008

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

- People aren't very good at remembering numbers
 - And they're definitely no good at remembering IPv6 addresses!
- Classic solution: the hosts file
 - Domains maintain hosts files, which are distributed and synchronized via FTP
 - Simple, but absolutely does not scale
- DNS provides a way of providing names in a scalable, distributed way

- Structure of DNS
 - Hierarchical system, each part of hierarchy separated by dots
 - DNS servers are delegated authority over parts of the DNS zone by servers closer to the root of the tree
 - "13" "root" DNS servers store the delegations for the lowest level
- Recursive name resolution
 - Start at root, inquire for record at each level until we get what we want

- DNS resource records (RRs)
 - Fields: name, type (2 bytes), class (2 bytes),
 TTL (32 bit integer), data length (16 bits),
 data
 - DNS can store many different types of information; each is assigned a number
 - Types: A (1, IPv4 address), AAAA (28, IPv6 address), CNAME (5, alias), MX (15, mail exchanger), PTR (12, reverse DNS), TXT (16), SOA (6, start of authority), NS (2, name server)
 - Records also have a class the only useful one nowadays is IN (1, Internet)

- DNS over-the-wire format
 - Queries can go over UDP or TCP
 - UDP is recommended, but queries are limited to 512 bytes
 - Fields
 - Transaction ID (2 bytes), flags (2 bytes: query/response, opcode, authoritative, truncated, recursion desired, recursion available, reserved, answer authenticated, reply code), questions, answers, authoritative answers, additional answers

- DHCP
 - Used for autoconfiguration of clients
 - Client broadcasts DHCPDISCOVER to network
 - DHCP servers reply with DHCPOFFERs containing IP address offers
 - Client broadcasts DHCPREQUEST with address of server whose offer was accepted
 - Server sends DHCPACK to acknowledge the lease and give other config information, or DHCPNAK to reject the request
 - Client sends DHCPRELEASE when done with the address

- SSL/TLS
 - Used for securing other application protocols
 - Client connects to server, two negotiate a cipher
 - Server sends back a certificate with a key
 - This key is used to negotiate a session key
 - Rest of the traffic in the session is encrypted with the session key

- HTTP
 - Developed to transfer web pages, now used for general file transfer and other purposes
 - One of many text-based protocols
 - Request syntax:
 - [command] [parameters] [HTTP version]
 - Additional headers separated by \r\n and ended by two \r\n
 - Reply syntax:
 - [HTTP version] [status code]
 - Headers, two \r\n, data

- HTTP con't
 - Common requests: GET, HEAD, POST
 - Reply codes: 200 (OK), 302 (Moved), 403 (Forbidden), 404 (Not Found), 500 (Internal Server Error), 503 (Service Unavailable)
- FTP
 - Text-based control protocol, but more complicated
 - Active mode: client connects to port 21 and gives a port for server to send it data on

- FTP con't
 - Passive mode: client connects to port 21, server sends random port for client to connect to receive data on