

Advanced Unix System
Administration

Lecture 14
November 3, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

The Transport Layer

● Application considerations
– For short communications that may happen

frequently/quickly, UDP is used
– Longer conversations, anything that needs to

happen reliably, etc. should be done over TCP
– Stream connections that can't take the

overhead or connection handling of TCP may
use UDP, but this requires careful application
design

– By volume, TCP traffic dominates on the
Internet

Packet Filtering and Firewalls

● At the simplest level, this is really easy to
do
– Hooks into parts of the network stack to

examine attributes of packets
– Decision to drop or allow through packet

based on some simple matching rules
– The lower the level you confine your

examination to, the faster it'll be
● This gives you less information, of course
● Good filtering is a tradeoff between speed and

flexibility

Packet Filtering and Firewalls

● State
– Stateless packet filtering can't give you

information about TCP connections
– Having the firewall engine keep connection

state allows real filtering of incoming
connections

– Once you're keeping state, other statistics
such as connection rate can also be useful

– Speed can be a problem – but you can also
use state to speed up packet processing

Packet Filtering and Firewalls

● Packet mangling
– It's not a long step towards actually changing

the packets based on matched rules
– Depending on where the hooks are, one can

change the destination of the packet, its
attributes, ...

● Notable implementations
– netfilter (Linux), pf (OpenBSD and other

BSD), ipfilter (portable) are quite flexible
– Most Windows firewalls are simpler packet

filters

Network Address Translation

● Parts of the IPv4 address space are
designated non-public

● We can alleviate the IPv4 address crunch
if we find a way to route traffic to and
from these hosts

● NAT is a clever hack to do this
– In its simplest form, just map public IPs to

private ones one-to-one with some mangling
– Not useful for the conserving IPs application

Network Address Translation

● Port translation
– We need some way of keeping track of who

sent the outbound traffic, if we're to route the
replies correctly

– Solution:
● Mangle the source port
● Keep track of the source ports corresponding to

each client connection, and route traffic
accordingly

– This limits the number of outbound
connections per client, but that's usually not
an issue

Network Address Translation

● Problems with NAT
– Applications (FTP) frequently include IPs and

port numbers in their protocols, so we need
to mangle these too

– Incoming connections can't be handled, so
direct connection protocols have a hard time

● Philosophical objections to NAT
– Hosts behind NAT on the Internet aren't really

full peers anymore
– Only delays the inevitable

The Domain Name System

● People aren't very good at remembering
numbers
– And they're definitely no good at

remembering IPv6 addresses!

● Classic solution: the hosts file
– Domains maintain hosts files, which are

distributed and synchronized via FTP
– Simple, but absolutely does not scale

● DNS provides a way of providing names
in a scalable, distributed way

The Domain Name System

● Structure of DNS
– Hierarchical system, each part of hierarchy

separated by dots
– DNS servers are delegated authority over

parts of the DNS zone by servers closer to the
root of the tree

– “13” “root” DNS servers store the
delegations for the lowest level

● Recursive name resolution
– Start at root, inquire for record at each level

until we get what we want

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

