Advanced Unix System Administration

Lecture 11 October 20, 2008

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

- The OSI model
 - Seven layers that conceptually separate the different functions of a network stack very cleanly
 - No practical modern network stacks actually implement the full separation model
- Physical layer (layer 1)
 - Specifies the actual communications hardware
 - Fiber, copper twisted pairs, wireless, SCSI . . .

- Data link layer (layer 2)
 - Specifies details of over-the-wire communication and error correction between physical hosts
 - We'll focus on Ethernet in this class
- Network layer (layer 3)
 - Routes traffic from Point A to Point B, possibly with QoS considerations
 - IP is the only important example nowadays

- Transport layer (layer 4)
 - Provides facilities for a link between hosts, such as flow control, error correction
 - TCP and UDP are the most important
- Session layer (layer 5)
 - Provides the link between hosts (connections, ports, state)
 - TCP performs the functions of the session layer; applications running on UDP must provide their own session facilities

- Presentation layer (layer 6)
 - Data representation for the application
 - Almost always performed by the application nowadays; protocols are usually considered part of layer 6
 - We'll cover some important examples
- Application layer (layer 7)
 - Provides a useful service to users
 - The application implementing a protocol is in layer 7

- What is Ethernet?
 - Ken Thompson: "Robert Metcalfe says that if something comes along to replace Ethernet, it will be called 'Ethernet'"
 - The physical layer has varied enormously over the last 30 years: 10 Mbit coaxial cable, 100 Mbit twisted pair, 10 Gbit fiber-optic
 - Actual electrical (optical) standard has varied over the years

- Ethernet topology
 - Classic Ethernet is a bus topology devices share one medium
 - Only one device can transmit at one time
 - Devices use CSMA/CD to handle access to the medium
 - All devices examine all transmissions to determine whether or not it's intended for them
 - Devices identified by MAC address
 - Doesn't scale well with large networks
 - Switched Ethernet only forwards transmissions to the wanted device

- The Ethernet frame
 - Each Ethernet transmission is packaged into a "frame"
 - Several different Ethernet frame types, which can coexist on the same network
 - "Ethernet II" is most common
 - 14-byte header containing source, destination MAC addresses, and an EtherType
 - Payload; 46-1500 bytes (hence the 1500 byte MTU)
 - 4 byte CRC checksum

- The EtherType
 - Supposedly was originally a length field
 - In Ethernet II, is a 16-bit value greater than 0x0600 used to indicate the network layer protocol contained in the payload
 - Common values:
 - 0x0800 IPv4
 - 0x0806 ARP
 - 0x86DD IPv6

IP: the Internet Protocol

- Packet-switched data protocol for use on unreliable networks
- Responsible for identifying computers and getting packets from A to B
- Addressing
 - 32-bit addresses (4.2 billion possible unique addresses)
 - Usually written in four decimal quads of 8 bits each, for convenience
 - This form is frequently misleading!

IP: the Internet Protocol

- Address resolution
 - There has to be a way of mapping IP addresses to hardware devices
 - The Address Resolution Protocol (ARP) deals with this
 - Devices broadcast an ARP packet: either a request for the physical address of a particular IP address
 - The matching device broadcasts a reply
 - Devices may also broadcast "gratuitous" ARP announcements
 - Address mappings are (or should be) cached by devices

IP: the Internet Protocol

- Networking
 - The IP address is divided into a network portion (n high bits) and a host portion (remaining low bits)
 - Hosts only speak directly to other hosts with the same network ID
 - Network mask (bitmask ANDed with the IP to obtain network ID) is usually written in dotted-quad or in CIDR notation (/n, where n is the number of bits)