
Advanced Unix System Administration

Fall 2008

Homework 1 Solutions

1. Tracing a running process. This exercise must be done on the login server. Among
the files for this week’s assignment is wrapper, which forks off a child process to
perform some tasks.

a. Run this program and observe its behavior. Now try tracing it with strace.
Does the program do the same thing? If not, why not?

We get the following output:

sh-3.1$ ./wrapper

Forked background process, pid 22187

This doesn’t tell us much.

When tracing the program, though, we get the following output:

sh-3.1$ strace -f -o /tmp/strace.out ./wrapper

Incorrect gid -- go away

Why? A look at the binary tells us that the program is setgid:

-rwxr-sr-x 1 sluo sluo 10269 2008-09-30 21:25 wrapper

Recall that a setgid program will be run as the group owning the binary, not as
the group of the user running the binary. You cannot trace a setuid or setgid
program for security reasons; the kernel ignores the setuid or setgid bit when
executing the program, to prevent you from seeing information you shouldn’t.

b. Attach to the child process using strace. Describe in detail what the program
is doing or trying to do, and the errors it is getting.

The process seems to be doing this over and over again:

sh-3.1$ strace -p 30719

[snip]

lseek(3, 256, SEEK_SET) = 256

read(3, "\10\f?\37\214\3["..., 127) = 127

open("/etc/shadow", O_RDONLY) = -1 EACCES

(Permission denied)

open("/home/sluo/foobarbaz", O_RDONLY) = -1 ENOENT

1



(No such file or directory)

lseek(4, 256, SEEK_SET) = -1 ESPIPE

(Illegal seek)

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

nanosleep({5, 0}, {5, 0}) = 0

[snip]

It’s seeking to byte 256 on file descriptor 3 (whatever that is), and reading 127
bytes from that file. It then attempts to open /etc/shadow for reading, which
fails with “Permission denied”, since /etc/shadow isn’t readable by ordinary
users. It then tries to open /home/sluo/foobarbaz for reading, which fails
because the file doesn’t exist. It then tries to seek to byte 64 on file descriptor
4, which fails because file descriptor 4 is a named pipe and seeking on pipes
isn’t permitted. After that, it sleeps for 5 seconds, and repeats.

Notice how strace is nice enough to show you what pointers passed as argu-
ments to syscalls point to, and to print out error numbers (and their descrip-
tions!) when errors occur. This is unfortunately more than can be said for
some of the other tracing tools you’ll come across.

c. What files does the process have open? Identify the file descriptors that were
referred to in the strace output.

Using lsof, we see the following at the bottom of the output:

sh-3.1$ lsof -p 30719

[snip]

read 30719 nobody 0u CHR 136,0 2

/dev/pts/0

read 30719 nobody 1u CHR 136,0 2

/dev/pts/0

read 30719 nobody 2u CHR 136,0 2

/dev/pts/0

read 30719 nobody 3r REG 202,17 1024 118075

/home/sluo/entropy

read 30719 nobody 4r FIFO 202,17 118076

/home/sluo/fifo

The process has our tty open on file descriptors 0, 1, and 2. File descrip-
tor 3 is /home/sluo/entropy (which I made by taking 1024 bytes out of

2



/dev/urandom), while file descriptor 4 is /home/sluo/fifo, a named pipe (as
expected).

d. What did wrapper’s child process do after the call to fork()? (This might
take a bit of thought, but you have enough information to answer this question,
assuming you already did the first three parts of the problem and were paying
attention in class!)

Above the files in the lsof output, we see the following:

read 30719 nobody txt REG 202,17 9344 118073

/home/sluo/hw1-files/private/read

From the lsof man page, we see that the txt under the FD field means
“program text (code and data)”; in other words, this is the file containing
the code of the running program. We therefore conclude that wrapper runs
/home/sluo/hw1-files/private/read after the fork().

What this part was asking for didn’t seem to be particularly clear to most of
you – I got several answers along the lines of “changes its effective GID”. While
this does have to happen at some point (otherwise you wouldn’t be able to trace
the process), wrapper actually does this before forking its child process.

2. Examining the process scheduler. Here’s an exercise looking at scheduling processes
with different nice levels. Do not run these examples on multi-user machines.

a. Examine, compile, and run forkloop.c and forkloop-io.c, which fork child
processes until they are interrupted by a signal or reach a cap on the total
number of processes created. (Don’t worry if you don’t understand the C; the
comments say everything you need to know about the operation of these two
programs.) What distinguishes these two programs?

forkloop’s children simply (attempt to) compute the factorial of their process
ID, while forkloop-io’s children read from a file on disk as well.

b. Run two copies of forkloop simultaneously with the same priority (see the
script run1). Do they share the CPU roughly equally? What about with one
copy running at lower priority (see script run2)?

We run each of these, and let it run for about 10 seconds before interrupting
with Ctrl-C (SIGINT):

sluo@login:~/hw1-files$ ./run1

28563: forkloop priority 0

3



28562: forkloop priority 0

28562: forked 701 processes total

28563: forked 647 processes total

sluo@login:~/hw1-files$ ./run2

29912: forkloop priority 0

29913: forkloop priority 10

29912: forked 903 processes total

29913: forked 589 processes total

Unsurprisingly, two forkloops running with the same priority share the CPU
roughly equally, while the copy with lower priority suffers when the two are
run with different priorities.

c. Run forkloop and forkloop-io simultaneously with the same priority (see
script run3). Do they share the CPU equally? What happens when you lower
the priority of forkloop (run4)? Why?

sluo@login:~/hw1-files$ ./run3 ../zeros

31408: forkloop priority 0

31407: forkloop-io priority 0

31407: forked 312 processes total

31408: forked 816 processes total

sluo@login:~/hw1-files$ ./run4 ../zeros

27807: forkloop-io priority 0

27808: forkloop priority 10

27807: forked 267 processes total

27808: forked 825 processes total

zeros is a 1 GB file of null bytes (generated by reading from /dev/zero using
dd).

Looking at run3 and run4, we see that run3 runs forkloop first before doing an
exec() of forkloop-io, while run4 runs forkloop at the lower priority. Using
this information to distinguish the two programs in the output, we see that
the forkloop-io process runs less frequently than the forkloop process does,
and this remains true when the priority of the forkloop process is lowered.
This happens largely because forkloop-io spends time blocking for I/O, and
processes that are blocked cannot be scheduled.

This example didn’t work as well for most of you as I intended, for two reasons:
(1) I didn’t bother to say that the file read should be a large file, without which

4



the reads will hit end of file and return nothing at all very quickly; and (2)
for best results, you’d want to clear out the file cache (with something like a
variant of malloc2, for example) between runs of forkloop-io, to make sure
that each read blocks while waiting for the disk.

3. The load average. If you watched the output of top and/or uptime while running
the forkloop examples, you probably noticed that the load average numbers spiked
while they were running.

a. How is this load average computed?

The load average is an exponentially-damped moving average of the length of
the run queue over the past m minutes (where load is usually computed for
m = 1, m = 5, and m = 15). On Linux systems, the exact formula for the
one-minute load average is

Li = Li−1e
−5/60 + n

(

1 − e
−5/60

)

where Li is the current load average, Li−1 was the load average at the previous
sampling point, and n is the length of the run queue. See
http://www.teamquest.com/resources/gunther/display/5/index.htm

(the source for this formula) for a bit of analysis on these figures.

b. What is the “full utilization” load average for an n-processor machine? Why?

The full utilization load for an n-processor machine (by “processor”, we mean
any physical hardware capable of having a thread scheduled on it, be it a
processor in a socket, one core among many in a processor, or a processor with
HyperThreading) is simply n. The run queue gives us the number of processes
that are trying to run at any moment; on a system that’s being fully utilized
(but not overloaded), this should be equal to the number of processes that can
actually be run at once.

c. Suppose you have a system with only one process running. What are the
minimum and maximum load averages possible, and why?

The maximum load average in this situation is 1, since on a system with only
one process running, the longest the run queue can get is one process. (In
practice, the maximum load average would be achieved if this process were
always ready to run – i.e. never slept or blocked for I/O.) The minimum load
average is of course 0 (indicating the process has been sleeping or blocked all
the time recently).

5



d. Optional. Suggest a small change or two to forkloop.c that would maximize
the load average spike produced by running it. You do not need to test your
change(s) (and you don’t want to, unless you have a system that you are willing
to hard reset afterward).

There are (at least) two possible changes here. You could let each child fork
its own children, instead of only letting the parent create child processes. This
lets the number of processes grow exponentially, instead of linearly, with time.
You could also remove the sleep(1) that the children perform, which would
make the child processes compete much more actively to run, making the run
queue longer.

4. Memory overcommit and out-of-memory behavior. Note: Do not try this exercise

on production machines.

Compile and run malloc3.c; this is similar to the malloc2.c demonstrated in class,
but allocates all of the memory it desires before attempting to write to any of it.

a. What happens when you run this program?

sluo@adv-hw1-sluo:~$ ./malloc3

Succeeded in allocating 8 MB of RAM

Succeeded in allocating 16 MB of RAM

Succeeded in allocating 24 MB of RAM

Succeeded in allocating 32 MB of RAM

Succeeded in allocating 40 MB of RAM

Succeeded in allocating 48 MB of RAM

Succeeded in allocating 56 MB of RAM

Succeeded in allocating 64 MB of RAM

Succeeded in writing to 8 MB of RAM

Succeeded in writing to 16 MB of RAM

Succeeded in writing to 24 MB of RAM

Succeeded in writing to 32 MB of RAM

Succeeded in writing to 40 MB of RAM

Killed

The program is killed when the system runs out of memory. Examination of
the kernel messages using dmesg shows

oom-killer: gfp_mask=0x280d2, order=0

6



Call Trace:

[way too much debugging output and memory info removed]

Out of Memory: Kill process 1455 (malloc3) score 17018

and children.

Out of memory: Killed process 1455 (malloc3).

The out-of-memory killer, which activates when there’s no more physical mem-
ory to be had and nothing can be pushed out (memory written to swap, or
mmap()ed pages dropped, or cache dropped), assigns each process a score based
on factors such as memory usage, and kills the one with the highest score.

Why did the system allocate so much memory in the first place (remember, we
only have 64 MB of RAM and no swap, and undoubtedly there are other things
in physical memory besides malloc3)? The Linux VM system overcommits
memory – that is, it’s willing to allocate memory beyond the amount of physical
RAM and swap available to a certain point, in the expectation that not all
allocated memory ends up being used. This reduces the need to swap to disk
and/or deny memory allocations, improving performance.

b. Can you imagine scenarios where this behavior might affect a process other
than the one writing to memory at the time the out-of-memory condition
occurs?

The primary risk from the out-of-memory killer comes when no one process is
hogging memory and piling up a big score. In such cases, it’s possible that the
victim could be an innocent bystander, perhaps an important system daemon
whose killing would leave the system effectively inoperable. (No, init won’t
be killed under any circumstances, but on a system with no console access, the
death of sshd effectively leaves the system inaccessible, for instance – several
of you seem to have come across this problem while doing this homework.)

c. Try increasing the number of blocks the program tries to allocate (change the
value BLOCKS is #defined to be). Can you reach a point where the memory
allocation fails? Try increasing the block size (BLOCK_SIZE). Can you reach a
point where the memory allocation fails? Explain your results.

Even with absurdly large values of BLOCKS, allocations succeed. In my testing,
it takes more than 5000 blocks (about 40 GB) to produce an allocation failure.
However, choosing BLOCK_SIZE larger than about 45 causes the allocation to
fail. Your results may vary depending on how much memory was in use on
your system at the time of the allocations.

7



Why? The VM only looks at the allocation size in comparison to the free
(as in unused, not unallocated) memory. Hence 8 MB allocations continue to
succeed, because the system has more than 8 MB unused memory available,
but 48 MB allocations fail.

Why do allocations of more than a certain monstrously monstrous number of
blocks fail, then? Each memory allocation incurs a certain memory overhead,
both in-kernel and in userspace (malloc() does bookkeeping in userspace); at
some point this overhead grows beyond our free memory, even if none of the
allocated memory actually gets used.

d. In situations where the consequences of overcommitting memory are unaccept-
able, how would you go about disabling this on your Linux system? What
would be some of the other effects of this change?

The malloc() man page tells us that we can disable memory overcommit in the
kernel by writing the value 2 to /proc/sys/kernel/vm/overcommit memory.
vm/overcommit-accounting in the kernel documentation (see any Linux ker-
nel source tree, or /usr/share/doc/linux-doc-2.6.18 on the login server)
tells us that this means that “The total address space commit for the system
is not permitted to exceed swap + a configurable percentage (default is 50) of
physical RAM”.

Disabling memory overcommit will increase swap usage when the system is
busy, thus decreasing system performance. Applications may also run slower
if they could have made use of large sparse memory allocations.

e. Optional. Try malloc3 with the configuration change from part (d). Use the
machine for other tasks, and try to use up lots of memory; do you notice any
effect on your system’s performance and behavior? If so, were they effects you
predicted?

8


