
Chapter 7

Networking

The field of networking is vast and to cover everything we would need several
courses on the subject. This section is meant to give you a basic introduction to
the current networking model and to some of the common networking protocols
you will see as a system administrator.

7.1 The 7 Layer OSI Model

The OSI Model is a layered, abstract model that describes network communi-
cation. By using this layered abstraction, each layer can function (somewhat)
independently of the others. For example, consider the HTTP protocol, which is
a layer 7 protocol that your web browser uses to communicate with web servers.
This protocol can implement something like “get this page: index.html” with-
out having to worry about how the data will actually be transmitted over the
network.

7.1.1 James Bond and the 7 Layer OSI

Before we discuss the function of each layer in the OSI model, its helpful to think
about what we are actually trying accomplish. I found this example of James
Bond relaying a secret message between two people to be useful. This example
was written by Dick Lewis <richard@lewistech.com>, Lewis Technology Inc.
<http://www.lewistech.com/>

James Bond meets Number One on the 7th floor of the spy headquarters
building. Number One gives Bond a secret message that must get through to
the US Embassy across town.

Bond proceeds to the 6th floor where the message is translated into an
intermediary language, encrypted and miniaturized.

Bond takes the elevator to the 5th floor where Security checks the message to
be sure it is all there and puts some checkpoints in the message so his counterpart
at the US end can be sure he’s got the whole message.

1



On the 4th floor, the message is analyzed to see if it can be combined with
some other small messages that need to go to the US end. Also, if the message
was very large, it might be broken into several small packages so other spies can
take it and have it reassembled on the other end.

The 3rd floor personnel check the address on the message, determine who
the addressee is, and advise Bond of the fastest route to the Embassy.

One the 2nd floor, the message is put into a special courier pouch (packet). It
contains the message, the sender and destination ID. It also warns the recipient
if other pieces are still coming.

Bond proceeds to the 1st floor where Q has prepared the Aston Martin for
the trip to the Embassy.

Bond departs for the US embassy with the secret packet in hand. On the
other end, the process is reversed. Bond proceeds from floor to floor where the
message is decoded.

7.1.2 The 7 Layers Explained

Now that we’ve seen an example, lets examine each layer individually. We will
start at the top layer (highest level of abstraction) and work down to the bottom.

Layer 7: Application This layer at which applications access the network.
This includes many of the high level protocols like HTTP for website, FTP for
file transfers, and SMTP for e-mail.

Layer 6: Presentation This layer translates data from the Application layer
into an intermediate format for use during network transmission. This is also
the layer that data compression techniques and encryption protocols such as
SSL are implemented.

Layer 5: Session This layer is responsible for inter-host communication and
manages the connections (sessions) between two hosts. It is responsible for
establishing a new connection when one is needed, manage active connections,
and terminate connections when they are no longed needed.

Layer 4: Transport This layer is responsible for end-to-end connections
and data transfer. This layer handles error recognition in received data. It
also segments/desegments large messages that are transmitted/received. The
most popular protocols in this layer are TCP and UDP. TCP is ’connection-
oriented’ and provides reliable data transfer by resending data until delivery
is acknowledged. UDP is ’connection-less’ and sends data without guaranteed
delivery.

Layer 3: Network This layer is responsible for logical addressing and path
determination. The best known example of a layer 3 protocol is the internet

2



protocol (IP). This implements routing and logical addressing through the use
of IP addresses, which will be discussed later.

Layer 2: Data-Link This layer is responsible for physical addressing and
packaging data for transfer between two network entities. The most common
layer 2 protocol is Ethernet. This layer is often split into two sub-layers: Logical
Link Control (LLC), and Media Access Control (MAC). This is the layer at
which switches and bridges operate. Communication on this layer is provided
only for locally attached network devices.

Layer 1: Physical This is the lowest layer of the abstraction and is respon-
sible for the actual electrical signal transmission. This layer includes things like
the pin layouts of network cards and network cable specifications. A well know
example of a layer 1 protocol is the 802.11{a,b,g} wireless specifications.

While each of these layers is important in our networking systems, you will
likely be spending most of your networking time working with the Layer 3 IP
protocol and a variety of Layer 7 protocols.

7.2 IP Addressing

IP (internet protocol) is the most common network layer protocol in use today.
There are several versions of IP in existence, though only IPv4 and IPv6 are the
only ones that are actually used. IPv4 is by far the most dominant IP version
in use on the internet today, so most of this discussion will involve IPv4 (or just
IP) addresses.

7.2.1 Representation

IPv4 uses 32 bits to represent on address. This allows for a total of 232 =
4, 294, 967, 296 unique addresses. However, many of these IP addresses are re-
served for special purposes such as private networks. While this may seem like a
lot of addresses, the number of unallocated addresses is decreases at an increas-
ing rate. This has helped to stimulate the movement to IPv6. IPv6 uses 128 bit
addresses, allowing for 2128 ≈ 5× 1028 addresses. While this seems ideal, IPv6
is still in the early stages of development and has not been widely adopted, so
we will focus on IPv4 for now.

While IP addresses are 32-bit binary numbers, they are rarely written out in
binary form. There are several human readable notations, but the dot-decimal
notation is by far the most popular. In this notation, addresses are written as
4 octets in decimal form separated by periods. For example, www.berkeley.edu
has the IP address 169.229.131.92.

3



7.2.2 Allocation

The allocation of IP addresses is handled by the Internet Assigned Numbers
Authority. IP addresses are, at least ideally, hierarchically structured. Thus,
IANA assigns large blocks of IP addresses to Regional Internet Registries.
These organizations are responsible for large geographical regions. For example,
the IPs from 62.0.0.0 - 62.255.255.255 are assigned to RIPE, the RIR for
Europe, and the Middle East. The RIR is then responsible for assigning IP
addresses to organizations within the region. The RIRs also maintain publicly
searchable WHOIS databases that contain information about IP assignment.

7.2.3 Private Addresses

Not all of IPs in the full IP range are publicly assigned by IANA. Certain ranges
have been designated Private Networks. These ranges cannot be routed out-
side the private network and hosts within the private network cannot communi-
cate directly with hosts outside the private network (though this can be solved
through the use of Network Address Translation, which will be discussed
later). The four designated ranges are:

IP Range IPs in network
10.0.0.0 - 10.255.255.255 16,777,216
172.16.0.0 - 172.31.255.255 1,048,576
192.168.0.0 - 192.168.255.255 65,536
169.254.0.0 - 169.254.255.255 65,536

Since these IPs cannot be routed outside the local private network, these ranges
can be used by any group for a private network. The most common example
is the average Cable/DSL customer with a home network of several computers
sharing an internet connection. If you are on such a network, take a look
at your IP address. You will likely find that that your IP lies within one of
these private ranges (most likely a 192.168 address). In order to communicate
with the Internet, your ISP assigns a public IP address to your DSL/Cable
Modem. More likely than not, your modem does not connect directly to another
computer, but instead to a router. This router manages your home network by
assigning hosts IPs in a private address range and doing the network address
translation needed to allow those hosts to communicate with the Internet.

You can see the non-routability of these addresses in this context. Data
going to/from addresses in the 192.168 private range cannot leave go past the
route that manages that network. Host 192.168.1.101 can communicate with
192.168.1.102 directly, but in order for either host to communicate outside the
private network, it will take on the public address of the modem. Having this
sort of isolation allows for any number of private networks to exist independently.
The number is only limited by the limited availability of public IPs to give
private networks in order for them to communicate with the outside. Of course,
there is no limit if you have networks that don’t need to communicate with
outside networks.

4



7.2.4 Loopback

In addition to the private ranges above, there is an super private range called
loopback range. This range consists of all IPs between 127.0.0.0 and
127.255.255.255. This range is reserved for localhost communication. Data
sent to these addresses never leave the source host, and will appear as incoming
data to that host (i.e. a loopback connection).

7.3 Network Address Translation (NAT)

Network Address Translation (called NAT or IP Masquerading) is a process
that involves rewriting the source and/or destination IP and/or port or packets
as they pass through the NAT host. The role of NAT host can be played by
any machine capable or running the required software. This is often done by
a router in something like a home network, but can also be done by an actual
host connected to a simple switch.

There are multiple types of NAT, including one-to-one NAT and over-
loaded NAT. One-to-one NAT is a simple IP address translation and doesn’t
involve any port mapping. This might be used if you happen to own several
public IPs and you want each to correspond to certain machines on your internal
network. In this situation, there is a one-to-one mapping between the public
IPs and the private network IPs, so all the NAT machine has to do is rewrite
the IP as it travels by.

The more commonly used (and more complicated) NAT is overloaded
NAT. This type is used to allow multiple hosts on a private network to ac-
cess an outside network using the same public IP. In this scheme, when a host
on the internal network communicates with the outside network, it takes on the
public IP assigned to the NAT and a port that is decided by the NAT. That data
is then sent over the outside network to the remote host. When the remote host
sends data back, it uses the rewritten IP and port as a destination and sends
it back over the network. When this data gets back, the NAT uses the port to
translate back to the correct internal IP and port.

To see an example of how this works, lets consider a simple network with
a couple of hosts on the private network that connect through a NAT router.
We’ll say Host A is host on the private network with IP 192.168.1.101. The
NAT router, Host B, has two network interfaces, one connected to the private
network with IP 192.168.1.1, and one connected to the outside world with
public IP 192.58.221.204. Lets also say that the remote host, Host C has IP
64.233.187.99 (which happens to be www.google.com.

Any packet sent on the network must have both a source and destina-
tion IP address and port. We will represent them as IP:port, for example,
192.58.221.243:80 would be port 80 on IP 192.58.221.243. Now lets follow
a simple transaction between Host A and the webserver on Host C. We will
follow the data packets, keeping track of source and destination IP and port.

When Host A sends the request for data to Host C, it will specify the stan-

5



dard web server port 80 as a destination port and one of the high numbered
ports, say 48085, as a source port. The packet information is:

Source: 192.168.1.101:48085
Destination: 64.233.167.99:80

This packet is then routed on to the network gateway, Host B. The NAT sees
that the destination is outside the private network, so it will undergo translation.
The NAT will come up with a high numbered port on the public connection, say
34533, and rewrite the source IP and port. The NAT keeps an internal table of
these translations, something like:

Source IP Original port Modified port
192.168.1.110 48085 34533

After going through translation, the packet leaves Host B with information:

Source: 192.58.221.204:34533
Destination: 64.233.167.99:80

The packet is then routed through the internet to Host C. Since the destination
is a web server, there will be data to be sent back. The response is sent back
using the source information of the received packet, so the return data packet
leaves Host C with information:

Source: 64.233.167.99:80
Destination: 192.58.221.204:34533

The packet is routed through the internet until it reaches Host B. When Host
B receives the packet, it checks the destination port against the NAT translation
table to see if the packets should be rerouted onto the private network. In this
case, it sees that the destination port, 34533, is in the NAT table as a modified
port. The packet headers are then rewritten with the data associated with that
NAT table entry and routed to the correct host on the private network. Thus,
the packet leaves Host B on the private network with information:

Source: 64.233.167.99:80
Destination: 192.168.1.101:48085

It heads back to Host A as if nothing had ever happened.
Its important to note that this has interesting effects on some higher level

protocols. For example, If you have ever used a file sharing client (for legitimate
purposes of course), you may have trouble with the ‘NAT Firewall’, with the
suggestion that you use Port Forwarding. The problem comes because the
automatically generated entries in the NAT translation table are only created
for connections initiated locally, while these programs often require remote hosts
be able to initiate connections remotely. If the remote host attempts to start a
connection with a host on the private network, it will get stopped at the NAT
because there is no translation table entry. Port Forwarding is simply adding
permanent entries to the NAT translation table.

6



7.4 Name Resolution (DNS)

While every host on the Internet has a unique IP addresses, as users, we rarely
come in contact with these addresses. When you open a web browser, you
don’t type in 66.102.7.99, you type in www.google.com. These names, called
domain names, are easier for us to remember than IP addresses, so we typically
use them instead. However these name are only for our convenience. The lower
layer protocols don’t work with IP addresses, not domain names. The Domain
Name System (DNS) provides the mechanism for resolving domain names to
IP addresses.

DNS acts like the phone book on your cell phone. When you open your phone
book and call “John”, your phone doesn’t connect to the network and try to dial
“John”. That means nothing to the telephone network. All phones care about
are actual phone numbers. Your phone book (like DNS) stores the relationship
between a convenient name and the number it represents. When you call “John”
your phone book looks up “John’s” phone number and dials that. DNS works
the same way. When you try to connect to www.google.com, the DNS resolver
on your machine will first look up the IP address for the www.google.com, find
that its 66.102.7.99, then continue communication with the IP address. DNS
stores other information associated with domain names, but for now we will use
the IP address as our example for the DNS resolution mechanism.

DNS is organized hierarchically. IANA manages the root level and top
level domains like .com, .edu, .net, .org, etc. Names that are associ-
ated directly under these top label domains, like berkeley.edu, must be reg-
istered with IANA. When a name is registered, a subdomain can be cre-
ated. Control of the names in this subdomain is delegated from IANA to the
owner of the subdomain. For example, domain names like www.berkeley.edu
and nuc.berkeley.edu are managed by UC Berkeley instead of IANA, since
Berkeley owns the berkeley.edu subdomain. Control can be further dele-
gated as deeper levels of subdomains are created. For example, UC Berke-
ley can create subdomains like nuc.berkeley.edu for the nuclear engineer-
ing department and ocf.berkeley.edu for the OCF computing center. Since
these groups get control of their subdomains, the nuclear engineering depart-
ment can add a hostname for sheridan.nuc.berkeley.edu without needed
to contact the university or IANA. Similarly, OCF can add a hostname for
tsunami.ocf.berkeley.edu without needing to deal with the university or
IANA.

Since the delegation of authority is hierarchical, it makes sense that host-
names are stored hierarchically. Each domain/subdomain (and the root level)
has a DNS server associated with it. The DNS server stores the mapping be-
tween domain name and IP address for the names that that domain has author-
ity over. If the domain delegates authority to a subdomain, the DNS server will
contain a link to the DNS server for that domain. For example, the DNS server
for berkeley.edu contains mapping for names like www.berkeley.edu and
grad.berkeley.edu. For a name like tsunami.ocf.berkeley.edu, although
this is under the berkeley.edu domain, authority for the ocf.berkeley.edu

7



subdomain has been delegated to the DNS server for ocf.berkeley.edu. Thus,
the tsunami.ocf.berkeley.edu will not be stored in the berkeley.edu DNS
server, but instead in the ocf.berkeley.edu DNS server.

The actual resolution mechanism is quite simple. When resolving a domain
name, the resolver starts by querying a domain DNS server for the authoritative
DNS server for the next subdomain in the address. When it gets a response
that the request is not a subdomain, it requests the address for that host. If the
host exists, you will the get IP. If the host doesn’t exist, you will get a “failed
to resolve hostname” type error. You’ve probably seen this type of error when
you mistype a URL in your web browser.

Lets looks at an example DNS resolution by trying to resolve the IP address
for my favorite host tsunami.ocf.berkeley.edu. The resolved with start at
the root level server and working its way down. The conversation would look
something like:

Resolver (to root DNS): Where is the DNS server for .edu?
root DNS: Here’s the address.
Resolver (to .edu DNS): Where is the DNS server for berkeley.edu?
.edu DNS: Here’s the address.
Resolver (to berkeley.edu DNS): Where is the DNS server

for ocf.berkeley.edu?
berkeley.edu DNS: Here’s the address.
Resolver (to ocf.berkeley.edu DNS): Where is the DNS server for

tsunami.ocf.berkeley.edu?
ocf.berkeley.edu: tsunami.ocf.berkeley.edu is not a subdomain.
Resolver (to ocf.berkeley.edu DNS): OK, what is the address for

tsunami.ocf.berkeley.edu?
ocf.berkeley.edu: 192.58.221.223

At the end of the resolution, the resolver is left with the address of the host
name it started with.

7.5 Address Resolution Protocol (ARP)

IP addresses provide a way for logically addressing hosts on a network. Within
the logical network layer, every data packet knows both its source host and
its destination host. While this creates a logical connection, transmission of
data ‘over the wire’ is done using physical addresses. These physical addresses,
usually MAC (Media Access Control) addresses, uniquely identify a piece of
network hardware, like an ethernet card. Before a packet can be sent over
the network, the logical IP addresses need to be resolved to physical hardware
addresses.

You may wonder why you would need a hardware addresses if you already
have the IP addresses. Well, the IP addresses only give the addresses of the
end-to-end connection hosts. The problem is that 99% of the time, you will
be communicating with hosts that aren’t on your local network. The data will

8



probably need to be routed over the internet to reach the destination host. Here
is where the hardware addresses come in. The data packet will always have the
same logical source and destination IP addresses, but the lower level ethernet
frame that is transmitted from one physically connected host to another will
have the physical source and destination addresses of those two hosts.

For example, consider the how you might communicate between my com-
monly used host tsunami, which is located in Berkeley, CA, and the the UCLA
webserver, located, as you might expect, in Los Angeles, CA. As far as the
network layer (IP) is concerned, data travels from me (192.58.221.223) to
the webserver (169.232.33.135). However, to actually get from tsunami to
www.ucla.edu, the data will have to hop across several networks, as can be
seen from the following traceroute (note that timing data has been dropped for
simplicity):

aoaks@tsunami:~$ traceroute www.ucla.edu
traceroute to www.ucla.edu (169.232.33.135)
1 fast2-9.inr-230-spr.Berkeley.EDU (192.58.221.1)
2 g3-14.inr-201-eva.Berkeley.EDU (128.32.255.109)
3 ge-1-2-0.inr-002-reccev.Berkeley.EDU (128.32.0.36)
4 hpr-oak-hpr--ucb-ge.cenic.net (137.164.27.129)
5 svl-hpr--oak-hpr-10ge.cenic.net (137.164.25.8)
6 lax-hpr--svl-hpr-10ge.cenic.net (137.164.25.12)
7 ucla--lax-hpr1-ge.cenic.net (137.164.27.6)
8 border-1--core-2-10ge.backbone.ucla.net (169.232.4.102)
9 core-2--csb1-1-ge.backbone.ucla.net (169.232.8.5)

10 www.ucla.edu (169.232.33.135)

The actual translation from logical addresses to physical addresses is per-
formed using the Address Resolution Protocol (ARP) method. This is ac-
tually a relatively simple method. When the resolution starts, the source host
knows its own IP address and physical address, and possibly the destination
information (we’ll see why in a second). For now, assume it doesn’t have the
destination information. In order for a host (say with IP 192.168.1.101 and
HW 00:A0:CC:DE:CD:68) to find the destination (say with IP 192.168.1.104
and HW 00:A9:DE:A8:C5:92), the source host will broadcast (send to all hosts
on the local network) an ARP request. This says something to the effect of
“Who has IP 192.168.1.104? Tell 192.168.1.101 at 00:A0:CC:DE:CD:68.”
Since this goes out to all hosts on the local network, they can all record the
information about the relationship between that source IP and hardware ad-
dress in a local cache for use later (this is how a host may know the destination
information before asking). When the host 192.168.1.104 sees this request,
it responds that host (note that it doesn’t broadcast) with an ARP response
like “I have IP 192.168.1.104. My hardware address is 00:A9:DE:A8:C5:92.”
The source host can now store this relationship in its cache and proceed.

What is also often done is ARP announcements, called Gratuitous ARP.
A host will send out an ARP request, not intending to receive a reply, but simply
to update the ARP caches on any hosts that get the announcement. This is

9



often done by operating systems during start up to help resolve some problems
that typically occur. A typical example would be when an ethernet card on a
host is replaced. Now the ARP relationship between IP and hardware address
has changed, but other hosts on the network still have the old relationship stored
in their ARP cache. By broadcasting a gratuitous ARP at start up, these old
ARP relationships are updating in the other hosts without them having to wait
for the changed hosts to make an actual ARP request.

7.6 Reverse ARP / DHCP

We have discussed the case of a host resolving a logical IP address into a phys-
ical hardware address. Now lets consider the opposite resolution. A host comes
on the network with a hardware address and wants to know what IP it should
have. This is a common case for hosts on a private network like a home network.
Back in the day, this was handled, logically enough, by Reverse ARP, which
would use a server to provide mappings between physical hardware addresses
and logical IP addresses. RARP has been obsoleted by Dynamic Host Con-
figuration Protocol (DHCP), which in addition to providing an IP, can also
push all sorts of configuration information like netmask, default gateway, DNS
servers, time servers and more.

DHCP is a client/server protocol, so in order to work, the network must have
a DHCP server running on it. This is often handled by a router with DHCP
software installed on it, but it can also be handled by a host on the network (most
use the same host as the NAT host). The network administrator configures the
DHCP server with the data it should push to clients that request an IP, like
netmask, default gateway, DNS server, etc. As for IP assignments, DHCP offers
several mechanisms, but the two most used are manual and dynamic, which are
often used together.

In manual DHCP, the hardware address is stored in a list on the DHCP
server and given a static IP to use. When that hardware address requests an
assignment from the DHCP server, it will always get the same IP address. This
is convenient if you don’t want to have to configure all of the clients manually,
but still want them to have specific IP addresses.

In dynamic DHCP, the network administrator assigns authority of a pool of
free IP addresses to the DHCP server for distribution. When a client requests
an assignment, the DHCP server will lease out one of the free IPs in the pool.
The lease time is predetermined by the server and usually finite. Lease times
can range from an hour to several months (or infinite, if desired). Before the
lease expires an host that is still using its lease will need to renegotiate for a
new lease.

While it is possible to have multiple DHCP servers on the same network,
you need to be careful when allocating free IP pools. You must make sure that
the free IP pools assigned to each host have no overlaps or encounter problems.
One DHCP server may give out an overlapping IP and it won’t let the other
DHCP server know. Then if the another DHCP server attempts to give out the

10



same IP, you will have two hosts with the same IP on the network.
Now lets follow the typical conversation that takes place when a DHCP

client requests a lease. The client starts by broadcasting a DHCP discovery
message to the local network. This says something like ”This is my hardware
address, what is IP address should I use?” Since this is broadcast to the entire
local network, any DHCP servers that are listening will get this discovery signal.

The DHCP server (or servers if there are multiple on the network) will
send a DHCP offer message to the client (not broadcast). The response says
something like ”I’m offering this IP address and a lease. Do you want to take
it?” This offer contains an IP, lease information, and a few key configuration
values. The IP could either be for a static IP if the client is in the manual
DHCP table, or the server will reserve one of the free IPs in the dynamic pool.

Once the client receives an offer (or several if there are several servers), it
will look through them and choose one. Once it picks one, it will broadcast a
DHCP request message indicating which IP it chose. It says something like
”I’ve decided I want to use this IP address that was offered to me by this DHCP
server.” Since this is broadcast, all of the DHCP servers that offered an IP will
get a response from the client. When the DHCP server that offered the lease gets
the response back, it will move into the final phase of the transaction. Any other
DHCP servers will get the response, see that the client chose a different server,
and withdraw the lease, returning the IP to the free pool if it was reserved.

Now that the chosen DHCP server has received a request from the client, it
will go into the final stage of configuration. The server will send a DHCP ac-
knowledgment message back the client (not broadcast). This says something
like ”I’ve acknowledged the assignment of your IP address to your hardware
address. Here is your lease information again and any extra configuration in-
formation you may need.” While the DHCP offer only contained a few select
configuration details, this will contain all of the configuration options that the
DHCP server is supposed to distribute. When the client receives this, it applies
the given values and configuration is complete.

11


