
Chapter 5

Compiling Software

The process for adding software in Linux is quite different from people coming
from a windows environment are used to. Specifically, it contains two extra
steps: configuring and compiling. These extra steps take the program from
source code to a compiled binary. Its not that these steps don’t exist in Win-
dows, its just that for the most part, they are done by the software developer
before distribution.

The reason these steps come up is because compiled binaries are architecture
dependent. That is, something compiled for the x86 architecture (Intel & AMD)
won’t run on a different architecture like PowerPC (Mac). The reason Windows
people don’t have to deal with this is because the entire Windows operating
system is a pre-compiled binary that is built only to work on the x86 or x86 64
(64-bit) architectures. Thus, Windows software developers can pre-compile their
code and distribute binary packages that only require installation.

Linux, however, is on open source system that can be compiled to work
on any architecture (x86, x86 64, PowerPC, SPARC, ARM, MIPS, any more).
Therefore, in order for software developers to make their code usable to people
on any architecture, they release the source code and have the user go through
the compilation process.

We will discuss how to to take software from the distributed source code to
an installed program (often called the configure, make, make install process)
using the Apache web server as an example.

5.1 Getting the Source

So we want to set up an Apache web server. The logical place to start is
the Apache website: http://apache.org/. The Apache Software Foundation
works on a lot of software products, but we are interested in the HTTP server.
The downloads page offers several sources:

Unix Source: httpd-2.0.59.tar.gz [PGP] [MD5]
Unix Source: httpd-2.0.59.tar.bz2 [PGP] [MD5]

1

You will find that most of the time, program source is distributed in compressed
tar archives. You will also find that most of the time an MD5 checksum for each
archive is also released. This can be used after download to verify that the source
file was not corrupted during download. First we get the files with the wget
command line download program (ignore the line breaks, they were inserted so
the command would fit on the page):

aoaks@blight:~/src$ wget http://apache.mirrors.tds.net/httpd/
httpd-2.0.59.tar.gz http://www.apache.org/dist/httpd/
httpd-2.0.59.tar.gz.md5

Next, if possible, we verify the archive using md5sum:

aoaks@blight:~/src$ md5sum httpd-2.0.59.tar.gz
35a4cebaa6b4548f9a48375ea9629c8f httpd-2.0.59.tar.gz
aoaks@blight:~/src$ cat httpd-2.0.59.tar.gz.md5
35a4cebaa6b4548f9a48375ea9629c8f httpd-2.0.59.tar.gz

or, simply:

aoaks@blight:~/src$ md5sum -cv httpd-2.0.59.tar.gz.md5
httpd-2.0.59.tar.gz OK

Finally, now that we have confirmed the source has not been altered, we ex-
tract the source from the archive. If your version of tar supports it, you can
decompress and extract in one command:

aoaks@blight:~/src$ tar zxvf httpd-2.0.59.tar.gz

otherwise, you will have to decompress first, then extract:

aoaks@blight:~/src$ gunzip httpd-2.0.59.tar.gz
aoaks@blight:~/src$ tar xvf httpd-2.0.59.tar

5.2 Configuring

The configure step is used for two reasons. First, this is when you specify your
setup options for the program you will eventually create. Second, this step is
used for determining information about your system architecture and the paths
to the relevant libraries and development files that the application will need.
Fortunately, most of this work has been taken care of by the software developer.
Most, if not all source packages will come with a configure script in the top
directory of the package source. Lets look at the top directory of our Apache
source:

aoaks@blight:~/src/httpd-2.0.59$ ls
ABOUT_APACHE CHANGES InstallBin.dsp os/
acconfig.h config.layout LAYOUT README
acinclude.m4 configure* libhttpd.dsp README.platforms

2

Apache.dsp configure.in LICENSE server/
Apache.dsw docs/ Makefile.in srclib/
apachenw.mcp.zip emacs-style Makefile.win support/
build/ httpd.spec modules/ test/
BuildBin.dsp include/ NOTICE VERSIONING
buildconf* INSTALL NWGNUmakefile

As you can see, Apache came with a configure script. To configure the software
with all the default options, you need only run the configure command with
no arguments:

aoaks@blight:~/src/httpd-2.0.59$./configure

However, most of the time you will want to specify at least some custom build
parameters. Most configure scripts are set up so that the -h or --help will
give you all the possible build options:

aoaks@blight:~/src/httpd-2.0.59$./configure -h | less

This will give you a list of all the possible build options, usually with their
default values noted. You specify the build options as command line options to
configure. This process is similar to the Windows interactive installers. This
is where you specify things like installation directory, which features you want
enabled/disabled, and paths to needed libraries if they are in a non-standard
location.

We won’t do much customization of the sample Apache server, but this is
the point most customizations would be done. Apache actually has a feature
that allows additional modules to be built after the fact and loaded in without
recompiling, but that won’t usually be the case. Lets just specify an installation
directory (notice the trailing \ at the end of the first line. This escapes the
newline character inserted when the Enter key is pressed, allowing commands
to span multiple lines):

aoaks@blight:~/src/httpd-2.0.59$./configure \
--prefix=/opt/httpd/apache-2.0.59

This will start generating a massive amount of output as it checks your system
configuration:

checking for getpwnam_r... yes
checking for getpwuid_r... yes
checking for getgrnam_r... yes
checking for getgrgid_r... yes

Checking for Shared Memory Support...
checking for library containing shm_open... -lrt
checking sys/mman.h usability... yes
checking sys/mman.h presence... yes

3

After a lot of output, it will eventually finish. If it finishes with no errors, you
are pretty much golden. It is very unlikely you will have problems during the
next steps (though not impossible, mind you).

The configure step is where most of your problems will come up. This is
where you will find out if you are missing files or programs needed to build
the software in question. For example, the configure script will probably look
for the presence and location of the a C compiler. If it can’t find one, it will
error out, and you won’t be able to continue building your software until that
dependency has been resolved. You may also run into problems with missing
development files. For example, if you were compiling PHP and you wanted to
build it with MySQL support, you will need the MySQL client source files. If
these files aren’t in the standard location and you don’t specify their location
to PHP’s configure script, it will generate an error. Again, you won’t be able
to build the software in question until the development file dependencies have
been resolved.

Once your configure script finished without errors, you are ready to move
on to the next step.

5.3 Building

Actually compiling the software will take the longer time of this process. There
are often hundreds of source files that must be compiled and linked together
to form the final binary program. Fortunately, all of the compile orders and
linking instructions are taken care of by the make program.

The make program is a simple utility that takes a Makefile and an optional
target and does whatever the Makefile says must be done to satisfy the build
target. The Makefile itself consists of long lists of dependency listings that
basically say: “This file depends on these other files. In order to generate this
file from these files, run this command”. When make is run, it finds the top
level file and looks at its dependencies. If the file doesn’t exist, it attempts to
generate it using the command specified. However, before trying to make the
top file, it looks at the dependencies to see if any of those files are specifies
in the Makefile. If some of them are, it hold off on generating the top level
file until its dependencies have been created. This process continues down the
dependency tree until there are no more dependent files that must be generated
and then works backwards, generating specified files from their dependencies.

This is a very nice facility, but you may wonder where this Makefile comes
from. Well, this is the result of the configure script. While it was examining
your system configuration, it was generating the Makefiles using the informa-
tion it gathered and the options you specified. As a result, the entire build
process is simplified to running make:

aoaks@blight:~/src/httpd-2.0.59$ make

This will begin compiling the final binaries and will output the commands it is
running as they are run. For example:

4

/bin/sh /home/a/ao/aoaks/src/httpd-2.0.59/srclib/apr/libtool --si
lent --mode=compile gcc -g -O2 -pthread -DHAVE_CONFIG_H -DLINUX
=2 -D_REENTRANT -D_GNU_SOURCE -I../../include -I../../include/a
rch/unix -I../../include/arch/unix -c copy.c && touch copy.lo

/bin/sh /home/a/ao/aoaks/src/httpd-2.0.59/srclib/apr/libtool --si
lent --mode=compile gcc -g -O2 -pthread -DHAVE_CONFIG_H -DLINUX
=2 -D_REENTRANT -D_GNU_SOURCE -I../../include -I../../include/a
rch/unix -I../../include/arch/unix -c dir.c && touch dir.lo

As long as your configure process finished without errors, it is very unlikely
that you will run into problems here, however, it is not outside the realm of
possibility. If you do run into errors, it is usually relatively easy to determine
what happened from the error messages and how to fix the problem.

One of the nice features of make is that it checks the modification time of
files and dependencies before doing work. Thus, if a file is specified in the
Makefile and has dependencies, but those dependencies all have modification
times earlier than the file in question, make knows it doesn’t have to regenerate
the file and moves on to the next. Thus, if the make process was interrupted for
some reason, this handy feature allows you to pick up right were you left off.

5.4 Installing

This is where the Linux software build process meets up with Windows and
Mac type installers. The program has now been compiled and is ready to be
installed into the system. Fortunately, all of the installation instructions were
given during the configure process. Most of the time, installing simply means
giving make the install target. There are often other targets available, such
as test, which will test the compiled program with predefined tests, or clean,
which will remove compiled files and configuration information so a different
built process can be done.

While the other steps could be done as a normal user, the install process
usually requires extra privileges. This depends on the prefix that make is ex-
pecting to install in. If you specified some place where you have permission,
like $HOME/apache/, then you can do it as yourself. However, the default lo-
cation will often be somewhere in the system directories like /usr/local/ or
/opt/local/ (in our example, /opt/httpd/apache-2.0.59). Therefore, in or-
der to continue, either become root or use sudo (if you have it) to run the install
command:

aoaks@blight:~/src/httpd-2.0.59$ sudo make install

Again, this will output a lot of information as it moves around the source tree
and places things in the correct place in the filesystem. You really shouldn’t get
any errors here. If you do, it is almost certainly related to a lack of permission
on certain directories. If this finishes without errors, that it. You’re done!

5

5.5 The Finished Product

Now that we have finished the install process, lets look at what we got:

aoaks@blight:/opt/httpd/apache-2.0.59$ ls
bin/ cgi-bin/ error/ icons/ lib/ man/ modules/
build/ conf/ htdocs/ include/ logs/ manual/

We can see intuitively where things are stored. The compiled binaries and
control scripts are in bin, logs are stored in logs, web documents are in
htdocs, additional modules are in modules, etc. The main configuration file
is conf/httpd.conf. The actual server binary is bin/httpd and the control
script is bin/apachectl. Note that in the default Apache server configuration,
the daemon will attempt to bind to port 80. By convention, the first 1024 ports
are considered privileged and can only be bound to by a process that is started
by root. If you try to start apache as a normal user on the privileged port 80,
you will get errors:

aoaks@blight:/opt/httpd/apache-2.0.59$./bin/apachectl start
httpd: Could not determine the server’s fully qualified domain
name, using 127.0.1.1 for ServerName
(13)Permission denied: make_sock: could not bind to address
[::]:80
no listening sockets available, shutting down
Unable to open logs

You can either change the httpd.conf file so that the daemon will bind to a
non-privileged port, or start the server as root:

aoaks@blight:/opt/httpd/apache-2.0.59$ sudo ./bin/apachectl start
Password:
httpd: Could not determine the server’s fully qualified domain
name, using 127.0.1.1 for ServerName

Note that this time, no permission errors were generated, only a warning about
the server’s domain name was issued.
If you open a web browser and point it to the server, you will get a simple page
saying “If you can see this, it means that the installation of the Apache web
server software on this system was successful. You may now add content to this
directory and replace this page.”

6

5.6 Package Managers

As you have seen, building software from source can be time consuming and
involve a lot of troubleshooting if the build process doesn’t go as planned. This
process can be greatly simplified through the use of packages. Many Linux
distributions maintain a set of repositories that contain pre-compiled binary
packages for the popular architectures like x86. Since these packages are already
compiled, all that’s left is to install them. You can download these packages and
install them with the appropriate package handler. Keep in mind that this does
not save you from having to satisfy dependencies. If you download a package
that depends on other packages, you must install them first. This often leads
to a situation know as dependency hell.

This process can be simplified even further through the use of package
managers. These programs provide ways of quickly searching the package
repositories for desired software. After you find what you want, the package
manager will look at its dependencies, find those packages in the repository,
continuing until it finds all required packages. You can then tell it to go ahead
and install them and it will proceed to download all the necessary packages and
unpack them to the proper locations.

One such system is the APT package management system for Debian Linux
and its derivatives. This is possibly the most powerful package management
system available, providing a powerful command line interface, in addition to
well made GUIs that can run both in a terminal (aptitude) and in a graphical
system (synaptic).

7

