
Chapter 4

Authorization

This section deals with users, groups, and permissions for the files in the UNIX
system. Dealing with setting these things up is the job of the system administra-
tor. In fact, with the exception of setting permissions and ACLs (both discussed
later), all of setup in these sections (e.g. adding users, groups, sudoers entries)
must be done by the system administrator.

4.1 Users (/etc/passwd)

Every user on the UNIX system is associated with a specific user account that
keeps track of certain settings specific to the user. These are things like the
location of your home directory, your default shell. The data for these accounts
is stored in the /etc/passwd file. This is a plain text file consisting of one-line
entries, each entry being a colon delimited list of values:

Name:Password:UserID:PrincipalGroupID:Gecos:HomeDirectory:Shell

Lets examine each entry:

Name The username of the account.

Password The user’s encrypted password. This field is covered more in the
password section.

UserID The user’s identification number. Every user on the system is as-
signed a unique number. There are certain UIDs that are reserved for specific
user accounts. For example, UID 0 is always associated with the super-user
account.

PrincipalGroupID The user’s principal group identification number. All
files created by the user are associated with the user’s principal group. This
field is covered more in the groups section.

1

Gecos This field has no defined syntax and is used for general information on
the user. This includes things like the user’s real name, phone number, room
number, etc.

HomeDirectory The path to the user’s home directory.

Shell The path to the user’s shell.

Lets take a look at some passwd entries:

root:x:0:0:root:/root:/bin/bash
www-data:x:33:33:www-data:/var/www:/bin/sh
gdm:x:105:107:Gnome Display Manager:/var/lib/gdm:/bin/false
thomson:x:1008:1008:Thomson Nguyen,,,:/home/thomson:/bin/bash
aoaks:x:1010:1010:Aaron Oaks,,,:/home/aoaks:/bin/bash
abhi:x:1011:1011:Abhi Yerra,,,:/home/abhi:/bin/bash

You may notice that some of these users, like gdm and www-data seem like
odd choices for a person’s user name. These are referred to as system user
accounts. These accounts are used by certain system users for access control.
For example, the www-data user account is used by the webserver. By having
the webserver run as the www-data user, if for some reason the apache server is
compromised, only the files accessible by the www-data user or accessible.

4.2 Groups (/etc/group)

Every user in the UNIX system is associated with a collection of groups. These
groups allow permissions to be set that effective for anybody that is a member
of that group. For example, a set of users could collaborate on a file by allowing
read and write access on that file to anybody who is a member of a certain group.
This will be discussed later in the permissions section. Groups are specified in
the /etc/group file, in a format similar to that of the passwd file:

Name:Password:GroupID:Members

Lets examine each entry:

Name The name of the group.

Password The encrypted password for the group. This is rarely used.

GroupID The group’s identification number. Each group is assigned a unique
number. There are certain GIDs that are reserved for specific groups. For
example, GID 0 is always associated with the root group. This is the GroupID
that is specified in the /etc/passwd file. Every user is a member of at least one
group. The group specified in the passwd file is called their principal group.

2

Members These are users who are secondary members of the group. As dis-
cussed earlier, ever member specifies a principal group in the passwd file. This
field specifies users who are members of the group but do not declare the group
as their principal group.

Lets look at some example group entries:

video:x:44:sle,jchu,webcam,aoaks,thomson
plugdev:x:46:griffin
audio:x:29:griffin,sle,mpd,aoaks
wheel:x:108:sle,dima,angel,thomson,aoaks,sluo,yury
aoaks:x:1010:

On this system, the convention is that when a new user is created, a new group
is created for that user. Lets consider the aoaks user. If you look back at the
example passwd entries, you will see that the user aoaks declares his principal
group to be 1010. Looking at these group entries, this means that the his
principal group is aoaks. Any files created by aoaks will be owned by aoaks
and in the group aoaks. However, notice that the user aoaks appears as a
member of several other groups. This means that he will be given whatever
permission is associated with these groups.

For example, the wheel group is the group that system administrators are
members of. Since aoaks is a member of this group, he has whatever abilities
are granted to the wheel group. This typically means he can do things like run
high level commands. This will be talked about more in the permissions section.

4.3 Passwords (/etc/shadow)

The /etc/passwd file must be readable by everybody on the system in order
for programs to make use of it. Originally, this presented a problem because it
forced the encrypted password hashes to be readable by everybody. While they
were encrypted, anybody could use a password cracking program and with time,
reverse the password hashes. This was solved by moving the password hash into
a secure file called /etc/shadow. This file is accessible only by secure system
accounts. You may also have noticed that all of the password fields in the
passwd file contain only an x and not a password hash. This is by convention
and is used to mean that the password has been stored securely in /etc/shadow.

Note that the passwords stored here are created using the crypt encryption
function. If the value in the password field is not a valid output of —crypt—,
(usually a * or a !), the user cannot log in using password authentication.

A typical shadow entry looks like this:

aoaks:1djckutDKdkdcdmsdkuR23dj5DKjcd2l:13439:0:99999:7:::

The most important fields are the first two, which specify the user name and
the encrypted password hash. The other fields contain password aging data.
This includes things like password age, until the password expires, etc. The

3

specifications of these values varies between platforms, so we won’t go into this
here.

4.4 Permissions

Every file on the system is associated with a specific user (the owner) and a
specific group. Lets look at some sample files:

aoaks@flood:~$ ls -l | head
total 16328
-rw------- 1 aoaks ocf 235830 2007-02-14 12:35 110bs07-rel.pdf
-rw------- 1 aoaks ocf 8515935 2007-02-14 20:56 aoaks
drwx------+ 4 aoaks ocf 4 2007-01-27 19:40 class/
-r--r--r-- 1 aoaks ocf 20480 2006-11-03 22:22 Coursework.xls
-rw-r--r-- 1 aoaks ocf 135 2007-02-13 12:48 data
drwxr-xr-x+ 2 aoaks ocf 47 2007-02-20 01:47 decal/
drwxr-xr-x 2 aoaks ocf 27 2007-01-28 17:06 decalsle/
-rw------- 1 aoaks ocf 81227 2007-01-21 17:48 decal-sle.zip

Among other output, first, third, and fourth column are most relevant to per-
missions. The third and fourth columns specify the files owner and group re-
spectively. The first column shows the permissions that are set on the file.

Permissions are divided into three groups, then into three types. The per-
mission groups are owner, group, and other, which specify permissions for
the file’s owner, members of the file’s group, and everybody else on the system.
For each group, there are three types of permissions: read, write, and execute.
The meaning of these permissions differs for regular files and for directories.

4.4.1 Regular Files

Permissions on regular files mean what they say:

Read You have permission to read the data in the file.

Write You have permission to write data to the file.

Execute You have permission to execute the file as a program.

4.4.2 Directories

Permissions on directories have a slightly different meaning. Since a directory
file contain information about the files contained within it, the permissions on
a directory relate to the contents of the directory.

Read You have permission to view what files are in the directory.

4

Write You have permission to create or delete files in the directory.

Execute You have permission to cd into the directory and stat the files
within it.

The execute permission on a directory is perhaps the most confusing of all
the permissions. This requires some knowledge about the system calls involved
with accessing data. In order to access a file, the system must first look up the
permissions on the file. In order to get the permissions, the system runs the
stat system call on the file’s inode (the file’s unique identifier in the filesystem).
In order to look up the inode number, you have to be able search the directory
file, which requires execute permission on the directory.

This has some interesting implications. If you don’t set execute permission
on a directory, the contents of the directory are inaccessible. Thus, even if
you specify full permissions on a file, if you don’t give execute permission to
the directory that contains it, you won’t be able to access the file. This works
from the root directory up to the file in question. Therefore, if you have a file
/foo/bar/baz/myfile.txt, you will need to have execute permission on \, foo,
bar, and baz before you can even look up permissions on myfile.txt.

4.4.3 Special Permissions

In addition to the general permissions discussed above, there are also special
permissions that can be used by the experienced administrator to accomplish
specific goals. It is important that you know what you are doing before us-
ing these permissions. Be careful!!! These permissions can introduce
major security holes if you use them without understanding the
implications of their use!

File setuid and setgid bits Normally when a file is executed, it runs with
the permissions of the running user’s UID and GID. If the setuid or setgid
permissions are set, the file executes with the UID or GID of the file.

Directory setgid bit When the setgid bit is set on a directory, all new files
and directories created within that directory take on the GID of the directory,
rather than the principal GID of the user.

Sticky bit The sticky bit is usually applied now only to directories. When ap-
plied on a directory, files within the directory can only be renamed or deleted by
the file’s owner, the directory’s owner, or the super-user. This is most commonly
used on the /tmp directory. This directory typically gives full permissions to all
users on the system so that all uses can use the temp space. Normally, since
every user has write permission on the directory, they would have permission to
remove other user’s data. Applying the sticky bit fixes this problem.

5

4.5 ACLs

You may have noticed that two of the files in the sample file listing have + signs
at the end of the permissions. This indicated that an ACL has been set on that
file. Access Control Lists (ACLs) provide a way to modify permissions on a file
in order to allow permissions that would be difficult to set up otherwise. For
example, say I wanted to give jameson permission to modify the Group_Info file
so that he could update his information when it changes. If I gave ownership of
the file to him, I would no longer be in control of it. If I added him to my group,
he would have permission to access anything in my group. The solution is to
set an ACL on the file, specifying full permission for jameson. By doing this, I
can give him the permissions he needs on a specific file without compromising
my other files. ACLs can only be specified by the owner of the file. You can
read up on ACLs in the man pages (getfacl and setfacl).

4.6 Sudo

Sudo is similar to ACLs in that it allows you to extend permissions to other users,
but unlike ACLs which allow you to give permissions on files to other users, sudo
allows you to execute commands as another user. It consults a central files called
the sudoers file to see if you have permission to run the requested command as
the requested user. If you do, sudo changes your UID and GID to the desired
user and group and executes the command. This method can be very useful
for delegating privileges. For example, the adduser command is used to add
users to the system. In order to work, it must be run as root. If you as a
system administrator want to give certain trustworthy users the ability to add
new users to the system, you could add them all to a group, say creators,
then specify in the sudoers file that all members of the group creators have
permission to run /usr/sbin/adduser as root. You can learn more about the
sudo system, read up on it in the man pages (sudo and sudoers).

6

