
System Administration for Beginners

Supplementary #1: Getting Around in UNIX

February 16, 2007

I have written this guide up because I feel like lecture is focusing a bit too
much on telling you how things work or how they should work rather than
showing you. Included in this document are some of the basics that are key to
mastering before moving further into more advanced topics in.

This supplementary guide will focus on the topics of learning the commands
and what they do rather than explain concepts. Though important, they have
been covered in the lecture notes. Some words my be emphasized like so to
point out concepts or terminology that would be a good idea to look up.

If you’re just starting, don’t worry too much about memorizing commands or
let the acronyms get to you. After some practice (like working on lab exercises
and homework), the commands and steps will come to you easily. Otherwise,
make use of the man pages; if you are ever unsure of what a command does, be
sure to read up on the manual before executing it.

Also, as a word of warning, UNIX and other UNIX clones will not com-
plain much unless a command is entered incorrectly. If you enter the command
rm -rf /, which will delete the entire root directory (effectively killing your
system), the operating system will assume you know what you are doing and
does not hesitate to execute that operation.

1 Getting Started

1.1 Logging In

There are two basic ways to log in to a computer and pull up a terminal. The first
way is if you are physically present at the machine with a keyboard, monitor,
and mouse. There will be a prompt waiting for you to enter your user name,
then prompt you for your password, and then proceed to log you in. A GUI
will generally be provided; much like the equivalent of Themes on Microsoft
Windows, the GUI, or window manager, can be changed and customized as
you see fit. Though this topic will not be covered here, you can find more
information on it online. [3]

The second way is to remotely connect to it through SSH. Depending on
your operating system, there are different terminals that you can use to connect
to the computer. For Microsoft Windows, popular ones include SSH Secure

1



Shell [2] or PuTTY [1] and will generally prompt you for the host to connect to
and your login. On Mac OS X and GNU/Linux, a terminal should have been
installed by default and you will typically use the command line to connect to
a different server.

For the purposes of this course, you will log in to a computer in a computer
lab or your computer at home and remotely connect to another computer (i.e.,
your project server) located at the Open Computing Facility (OCF). Though
the machines are physically present somewhere on campus, you will only have
remote access to them.

1.2 Working on the Command-Line

After logging in, you will want to open a terminal (like xterm or eterm). You
should be greeted with something like:

[cardi@fallingrocks]∼$

The terminal that you opened is running a shell, this is where you will input
commands and where display will generally output. If you type something in,
it will appear directly after the $. The syntax for the information preceding
the $ is as follows: [user-name@machine-name]directory$. Though it may seem
redundant, this is very useful for knowing what login you are using and which
machine you are remotely connected to. The syntax for the above differs from
shell to shell, but can generally be customized by editing a configuration file.

Now, we want to SSH into a computer which we want to manage. For the
purposes of this document, we will be using the services of the OCF; most of
the commands here should be reproducible on other systems.

TIP I will denote when to press the enter key with ←↩.

Using the ssh command, we will remotely connect to one of the OCF’s
servers. Note the command’s syntax. If the connection is successful, it will
prompt me for the password and then I will be a given a shell to execute more
commands on.

[cardi@fallingrocks]∼$ ssh cardi@ocf.berkeley.edu ←↩
Password: (type your password here) ←↩

[cardi@apocalypse]∼$

When finished using the terminal, make sure to exit using the command
exit. Depending on the terminal you are using, it will either close or grey
out the window. Security wise, it is important that you close any terminals
after you are finished, especially ones with root logged into them. Otherwise,
someone could easily hijack your terminal and perform malcious commands
under a privileged user.

[cardi@fallingrocks]∼$ exit ←↩

2



2 Basic Commands

2.1 Traversing Directories

Now that we have logged in, we can start using (and soon, administrating) the
system we are connected to. Let’s start by seeing where we are in the filesystem.
To print the working directory, use the command pwd.

[cardi@apocalypse]∼$ pwd ←↩
/home/c/ca/cardi

[cardi@apocalypse]∼$

Once I input the command, I hit the enter key (←↩). The shell interpreted
this and behind the scenes, sent instructions to the operating system to interpret
your command. What results is an output that we can understand and then
another prompt for the next command you want to enter.d behind the scenes,
sent instructions to the operating system to interpret your command. What
results is an output that we can understand and then another prompt for the
next command you want to enter.

The result of the command is the printout of the directory we are currently
in. To imagine the directory structure, think of whatever is in between the two
“/” as an actual labeled manila folder. In this example, the folder “cardi” is a
subdirectory, or inside, the folder named “ca”, which in turn is a subdirectory
of “c”, and so on, until the root directory /.

All our work will not be done in one directory, however. At the moment,
we are currently in our home directory (in shorthand: ∼). This is where we
will store our personal files. To change directories, we will use the command cd
path . Relative and absolute paths will not be covered here, but it is important
to differentiate the two.

Here is an example of traversing directories. Note the change in the text
preceding the command prompt.

[cardi@apocalypse]∼$ cd .. ←↩
[cardi@apocalypse]/home/c/ca$ pwd ←↩
/home/c/ca

[cardi@apocalypse]/home/c/ca$ cd .. ←↩
[cardi@apocalypse]/home/c$ cd ../.. ←↩
[cardi@apocalypse]/$ pwd ←↩
/

[cardi@apocalypse]/$ cd ∼ ←↩
[cardi@apocalypse]∼$ pwd ←↩
/home/c/ca/cardi

[cardi@apocalypse]∼$

3



2.2 Working with and Manipulating Files

2.2.1 Listing Contents

It is rather easy to move around directories; there are so many commands that
you need to know in order to get where you want to go. However, how do I
know which directories to cd to? One way would be to simply memorize and
keep track of all the directories that are existing, but after a while, that could
probably become very tedious. Fortunately, there are more commands that we
will learn that will aid us in this situation.

NOTE From this point forward, I will try to only show the relevant output.
Generally after entering a command and displaying the output, the shell
will again create a new line waiting for command input.

To list the contents of a directory, we can use the command ls. Using this
command will list the files and other directories that we may have in our current
working directory.

[cardi@apocalypse]∼$ ls ←↩
Deskop Documents

We now see the contents of the current directory. UNIX does not differentiate
between files and directories in terms of naming. Some shells may assign a
different color to show which are files and which are directories. To figure out
what something may be, we will use the file command.

[cardi@apocalypse]∼$ file Documents ←↩
Documents: directory

We can even input two or more filenames and it will output what each file type
is.

[cardi@apocalypse]∼$ file Documents Desktop ←↩
Documents: directory

Desktop: directory

Knowing that they are directories, we can cd into them and work with
whatever we need to from there. ls does not show all the files in a directory,
however. Files that have a “.” as the first character of the filename are hidden.
In order to see them, you will need to pass a flag; in this case, -a will print out
all the files in the directory.

[cardi@apocalypse]∼$ ls -a ←↩

. .dt .gtkrc-1.2-gnome2 .softwareupdate

.. .dtprofile .icons .ssh

.ICEauthority .esd_auth .login .sunw

.TTauthority .gconf .macromedia Desktop

.Xauthority .gconfd .metacity Documents

.adobe .gnome .mozilla

.bash_history .gnome2 .nautilus

.cshrc .gnome2_private .recently-used

4



There are a lot more files than shown before. Many of the files listed are
“hidden” because they contain important configuration information that makes
things work, like your shell or the GUI that you are using. They are editable,
but usually you will only have to edit them once or twice to get it the way you
want and leave it alone.

Try entering the command ls -al. What more information does this give
you? If you’re unsure, look at lecture notes from week 3 to understand the
concepts of ownership and permissions.

2.2.2 File Manipulation

The directory we’re working with looks pretty empty. Let’s start creating,
modifying, and deleting files. To create an empty named file, we can use the
command touch. The file will be of size 0 and considered “empty”.

[cardi@apocalypse]∼$ touch work ←↩
[cardi@apocalypse]∼$ ls ←↩
Desktop Documents work

[cardi@apocalypse]∼$ file work ←↩
work: empty file

[cardi@apocalypse]∼$ du work ←↩
0 work

[cardi@apocalypse]∼$ rm work ←↩
[cardi@apocalypse]∼$ ls ←↩
Desktop Documents

In summary, I created an empty file called “work”, listed the contents of the
directory (ls), tried to figure out the type and size of the file (file and du),
and then deleted it (rm).

What are the equivalents to creating and deleting directories? Try looking
at lecture notes from week 2 for a listing of some of the commands.

5



References

[1] http://www.chiark.greenend.org.uk/ sgtatham/putty/.

[2] http://www.ssh.com.

[3] http://xwinman.org/intro.php.

6


