

Advanced Unix System
Administration

Lecture 5
February 14, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Shared Libraries

● The dynamic linker
– Binaries have a “symbol table” containing

functions, etc. and their locations
– Dynamic binaries have tables with blanks –

it's the responsibility of the dynamic linker to
resolve these

– Linker loads listed dynamic libraries and tries
to resolve the symbols

– Allows shared code, but incurs a performance
penalty on most architectures

Shared Libraries

● Binary compatibility
– Programs expect the “ABI” offered by a

shared library to stay the same (structs,
function prototypes, etc.)

– When this assumption breaks, things go
horribly – or worse, subtly – wrong

– Hence mechanisms for versioning shared
libraries and symbols

Startup and Shutdown

● Bootloader
– Highly architecture-dependent behavior

● Kernel
– Need to get enough loaded to find root

partition, mount it, and launch userspace
– Traditional fully monolithic kernels load

everything here

● init
– Mounts filesystems, launches daemons, and

brings up the system

Startup and Shutdown

● init(8)
– PID 1, the “ultimate parent”
– Spawns and respawns various children,

according to configuration
– Two traditional varieties: System V, BSD

● System V init binary
– Used on Linux, Solaris, most commercial Unix
– Configured via /etc/inittab
– Uses “runlevels” to define the stages of boot

and what should be running

Startup and Shutdown

● System V style runlevel handling
– Usually performs actions when changing

runlevels based on the contents of /etc/rcN.d,
where N is the new runlevel

● Scripts starting with S are run with argument
“start”, scripts starting with K are run with
argument “stop”

● Two-digit number following S or K gives the
ordering

– Runlevel S is notionally invoked at the
beginning of startup, 0 and 6 at halt or reboot

Startup and Shutdown

● BSD init binary
– Used primarily on the BSDs
– Launches a script /etc/rc when invoked, then

spawns and respawns programs based on the
contents of /etc/ttys

– /etc/rc.shutdown is run on shutdown

● BSD style init handling
– Only used by OpenBSD nowadays
– /etc/rc and /etc/rc.shutdown do most/all of

the work themselves

Startup and Shutdown

● Comparing BSD and SysV init handling
– BSD-style init handling is simple and

straightforward, but difficult to modify
automatically

– SysV init has more flexibility and modularity
– With appropriate configuration of /etc/inittab

or /etc/rc, SysV init binaries can be
configured to behave BSD style (i.e.
Slackware) and vice versa – or could behave
entirely differently from either

Startup and Shutdown

● System shutdown
– Run shutdown scripts first
– Kill all processes: send SIGTERM to all

processes, wait a few seconds, then send
SIGKILL to make sure they're dead

– Sync/unmount disks, then power down or
restart

– SysV: last two steps actually run from the
shutdown scripts, invoked by init

– BSD: halt(8)/reboot(8) take care of all steps

Startup and Shutdown

● Criticisms of classic init
– Inefficient – processes not started in parallel,

SysV init requires launching lots of shells
– Manual establishment of order of tasks and

daemon load order required
– Provides no monitoring of services and

restarting of those that died
– Shutdown procedure is an ugly hack

Startup and Shutdown

● “Requires-depends” init handling
– Used in FreeBSD and NetBSD
– Standard BSD init binary
– /etc/rc{,.shutdown} uses a program

rcorder(8) to examine “Requires”,
“Depends”, “Provides” lines in scripts in
/etc/rc.d and provide an order to run them in

– Allows dynamic ordering of tasks,
parallelization (though currently not parallel)

Startup and Shutdown

● Replacing init
– SMF (Solaris 10+): dependency-based XML

config allowing parallel launch of processes
and restarting of services; “milestones”
separate stages of bootup

– launchd (OS X 10.4+): dependency-based
config allowing parallel launch; also
replaces/extends cron and inetd

– Upstart (Ubuntu 6.10+): event-based
structure for controlling processes; also
replaces/extends cron and inetd

