

Advanced Unix System
Administration

Lecture 4
February 8, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Processes

● Scheduling considerations
– Priority: higher-priority tasks should run more

often
– Starvation: processes that haven't run in a

long time should run
– (SMP systems) Processor affinity
– Locks held by processes; priority inversion
– Different workloads benefit from different

algorithms for sorting this out

Processes

● Process creation
– fork() and friends – creates a copy of the

parent
– If a new program is being invoked, the exec

family of functions overwrites the address
space with the appropriate code

– Dynamic binaries: the dynamic linker loads
code (more below)

– Start of program execution

Processes

● The process tree
– Every process has a parent – the process

from which it fork()ed
– Parent has privileges (and responsibilities)

with regards its children
– Parent and children form a process group,

which is also assigned an ID number
– The start of the process tree is init (always

PID 1)
– Orphaned processes are inherited by init

Processes

● Signals
– Allow processes to communicate with each

other and the kernel
– Provide primitive mechanism for

implementing callbacks – signals can be
trapped and a “signal handler” called

– If not handled, signals perform a default
action (usually exit)

– Signal programming is tricky because of
synchronization and syscall restarting issues

– Try `man kill` or `kill -L` for more information

Processes

● Threads
– Recall that the kernel keeps lots of state for

each process
– But if the processes are related, we might be

able to get away with less of that
– Threads = “lightweight processes”
– When threads have kernel support, they're

much faster to create and switch
– Shared resources means programming is

more difficult

Shared Libraries

● The dynamic linker
– Binaries have a “symbol table” containing

functions, etc. and their locations
– Dynamic binaries have tables with blanks –

it's the responsibility of the dynamic linker to
resolve these

– Linker loads listed dynamic libraries and tries
to resolve the symbols

– Allows shared code, but incurs a performance
penalty on most architectures

