

Advanced Unix System
Administration

Lecture 3
February 7, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Input and Output

● Synchronous I/O
– At simplest: process makes syscall to I/O

facility, kernel does I/O, returns
– This is what read(), write(), and friends do
– Note that “everything is [supposed to be] a

file” in Unix – network I/O is handled in a
similar way

– This model has some inefficiencies – context
switches, copies, and blocked processes

Input and Output

● Asynchronous I/O
– Allows the process to do something else

while I/O is running
– Different ways of doing this: don't bother

notifying the process, polling, event loop,
signals/callbacks

● Memory-mapped I/O
– Processes and kernel arrange to read/write

from memory in orderly fashion
– Fundamentally async

Input and Output

● Files and filesystems
– At the core, a FS is just a way of collecting

files efficiently
– Construction: usually laid out as blocks of

various types
– Directories contain pointers to other

directories and inodes
– inodes store filenames, metadata

(permissions, ACLs, timestamps), and
pointers to the actual data blocks

Input and Output

● POSIX filesystems
– Unix filesystems traditionally make various

guarantees – i.e. creating links will be atomic
– This means that applications make

assumptions about the way they operate on
files (example: the standard way of safely
replacing a file – especially a binary – while in
use)

– NFS breaks quite a few of these assumptions
– hence random tricks and workarounds

Processes

● Processes in the kernel
– Each process is assigned a process ID

number (PID)
– Kernel keeps a huge amount of state per

process: priority, whether blocked or not,
credentials, execution state, etc.

– (Linux) Pointers to these structures are
stored in a hash table hashed by PID and in a
linked list

Processes

● Scheduling
– On most systems, there is a “run queue” or

“ready queue” of processes that are not
blocked

– Kernel looks at processes to see which aren't
blocked

– Dispatcher looks at processes in run queue
and decides which one runs next and for how
long

– When time's up, dispatcher stops the running
process and performs the context switch

Processes

● Scheduling considerations
– Priority: higher-priority tasks should run more

often
– Starvation: processes that haven't run in a

long time should run
– (SMP systems) Processor affinity
– Locks held by processes; priority inversion
– Different workloads benefit from different

algorithms for sorting this out

