

Advanced Unix System
Administration

Lecture 25
May 2, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Clustering

● Why clusters?
– Large simulations/heavily-trafficked sites/etc.

require a lot of processing power
● This level of performance would be impractical to

build into a single machine
● Even where it is practical, it might be too

expensive

– Single machines fail
● Multiple machines in a cluster can provide more

reliability

Clustering

● Types of clusters
– High availability

● Multiple, (usually) identically configured machines
● Usually provides a failover mechanism
● Can also be used in load-balancing configuration

– Load-balancing
● Multiple, identically configured machines providing

the same service
● Traffic is directed to each of the cluster machines

in a random manner (perhaps weighted for
performance of the individual nodes)

Clustering

● Types of clusters con't
– High performance

● Designed to provide maximum performance for
applications which benefit from parallel processing

● Applications (usually) need to be designed for the
particular solution

● One can consider modern distributed computing
efforts to be an extension of the HPC cluster

Clustering

● Load balancing solutions
– DNS round robin

● Post multiple A records; resolvers should choose
one at random

● No front end required; caching/keepalive may be a
problem

– NAT magic
● Front-end redirects traffic at network layer to

machines in the cluster
● Sessions/state may be an issue

– Application-specific proxy

Clustering

● High availability solutions
– Heartbeat solutions

● A monitoring system watches over the servers in
the cluster and detects failures

● In load-balancing clusters, failure just results in the
removal of the server from the cluster

● Can also have systems where services running on
failed nodes are restarted elsewhere

● Can have systems which use hot spares on node
failure

Clustering

● High performance computing
– MPI: Message Passing Interface

● Provides an API for processes in an HPC cluster to
coordinate between different machines

● No attempt is made to present a usual API, so
applications need to be written for the cluster

– Single system image (OpenMosix, etc.)
● Attempts to present illusion of single computer with

lots of processors
● More overhead, but less adaptation needed for

applications

Clustering

● Common clustering issues
– Management

● As your cluster scales, centralized management
solutions are essential, whether they're scripts to
run things on lots of machines at once, monitoring
daemons, etc.

● Similar needs as managing large groups of
workstations

– Reliability
● Lots of nodes = more node failures
● Need way of dealing with failed nodes gracefully

Clustering

● Clustering issues con't
– Storage

● The clusters need some way of accessing the same
data, preferably one which scales well with parallel
access

● Can be a network file system or a SAN (storage
cluster)

– Networking
● Needs to be as fast and reliable as possible
● Topology is important

– Want to minimize the number of connections
– Nodes may need direct connections to other nodes

