

Advanced Unix System
Administration

Lecture 24
April 26, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Virtualization

● So what is virtualization anyway?
– Strictly, should refer only to a certain type of

what marketing calls “virtualization”
nowadays

– In the loose “marketing” definition,
virtualization refers to any technology that
allows the running of multiple full-fledged
virtual servers on one machine

– For convenience, we adopt this marketing
definition as a banner for these related
technologies

Virtualization

● Why virtualization?
– Consolidation – run many services on one

machine
● Makes management easier in many cases
● Increases hardware utilization, reducing costs
● Reduces power consumption

– Flexibility
● Easy to create and destroy servers as needed

– Security
● Isolate services from each other

Virtualization

● Why not virtualization?
– Creates single point of failure

● This creates part of the interest in migrating virtual
servers between machines

– Features inside the virtual server
● There are usually restrictions as to what you can do

inside a virtual server

– Security
● A compromise of the host will lead to a

compromise of all the virtual servers
● If the isolation is buggy, a compromise of one

virtual server might result in a full compromise

Virtualization

● Isolation
– Virtual server processes run in a separate

context in the same kernel
● Context has varying degrees of isolation – usually

includes at least filesystem, network, and resource
isolation

● What this context is called depends on the
technology

– Lightest-weight technology, but most limiting
● Very little overhead – 1-3% in most

implementations; supports potentially 100s of
servers

● Control of networking, hardware, etc. is limited

Virtualization

● Isolation con't
– Implementations

● FreeBSD jail: early implementation, very
lightweight, isolation of network incomplete

● Linux-Vserver: extension of various Linux features
to create “contexts”; good isolation, but no in-
context network control; various quirks

● Solaris zones: “containers” offer good isolation, no
in-container network control; some quirks

● OpenVZ/Virtuozzo: “virtual environments” offer
excellent isolation, in-container network control;
most overhead

Virtualization

● Hypervisor-based virtualization
– Pioneered by IBM in the 1970s
– A thin “hypervisor” runs directly on the

hardware and directs access
– The hypervisor presents an interface looking

like the bare hardware to kernels which it
hosts

● On architectures meeting the Popek-Goldberg
requirements, this is easy

● Otherwise, can use “paravirtualization” with
minimal modifications to the guest kernel

Virtualization

● Hypervisors con't
– Flexible and relatively lightweight,

management more difficult
● Can run different OS kernels, providing more

choice, more control, and more isolation
● More overhead than in-kernel isolation solutions –

can be up to 10%
● Each container has its own full OS, making central

management more difficult
● Resource sharing tends to be more inflexible than

in-kernel isolation solutions
● Technologies tend to be architecture-specific

Virtualization

● Hypervisors con't
– Implementations

● z/VM – the original IBM hypervisor, only runs on IBM
mainframes (System 370 and up)

● Xen – implements paravirtualization on x86, full
virtualization on x86 hardware with extensions and
IA-64; overhead of 3-8%

● Newer versions of VMware, future versions of
Microsoft Virtual Server on x86

● Sun's Logical Domains on UltraSPARC T1

Virtualization

● Full virtualization
– Provides emulation of a full hardware system
– Code runs on host CPU where possible

(compare emulation)
– Heaviest-weight, slowest option

● Few advantages over hypervisor virtualization on
supported hardware

● Most difficult management
● Lots of overhead – 30-50% is typical

Virtualization

● Full virtualization
– Implementations

● Classic Vmware (x86)
● MS Virtual Server (x86)
● QEMU with the KQEMU module (x86)
● VirtualBox (x86)

