Advanced Unix System Administration

Lecture 24 April 26, 2007

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

- So what is virtualization anyway?
 - Strictly, should refer only to a certain type of what marketing calls "virtualization" nowadays
 - In the loose "marketing" definition, virtualization refers to any technology that allows the running of multiple full-fledged virtual servers on one machine
 - For convenience, we adopt this marketing definition as a banner for these related technologies

- Why virtualization?
 - Consolidation run many services on one machine
 - Makes management easier in many cases
 - Increases hardware utilization, reducing costs
 - Reduces power consumption
 - Flexibility
 - Easy to create and destroy servers as needed
 - Security
 - Isolate services from each other

- Why not virtualization?
 - Creates single point of failure
 - This creates part of the interest in migrating virtual servers between machines
 - Features inside the virtual server
 - There are usually restrictions as to what you can do inside a virtual server
 - Security
 - A compromise of the host will lead to a compromise of all the virtual servers
 - If the isolation is buggy, a compromise of one virtual server might result in a full compromise

- Isolation
 - Virtual server processes run in a separate context in the same kernel
 - Context has varying degrees of isolation usually includes at least filesystem, network, and resource isolation
 - What this context is called depends on the technology
 - Lightest-weight technology, but most limiting
 - Very little overhead 1-3% in most implementations; supports potentially 100s of servers
 - Control of networking, hardware, etc. is limited

- Isolation con't
 - Implementations
 - FreeBSD jail: early implementation, very lightweight, isolation of network incomplete
 - Linux-Vserver: extension of various Linux features to create "contexts"; good isolation, but no incontext network control; various quirks
 - Solaris zones: "containers" offer good isolation, no in-container network control; some quirks
 - OpenVZ/Virtuozzo: "virtual environments" offer excellent isolation, in-container network control; most overhead

- Hypervisor-based virtualization
 - Pioneered by IBM in the 1970s
 - A thin "hypervisor" runs directly on the hardware and directs access
 - The hypervisor presents an interface looking like the bare hardware to kernels which it hosts
 - On architectures meeting the Popek-Goldberg requirements, this is easy
 - Otherwise, can use "paravirtualization" with minimal modifications to the guest kernel

- Hypervisors con't
 - Flexible and relatively lightweight, management more difficult
 - Can run different OS kernels, providing more choice, more control, and more isolation
 - More overhead than in-kernel isolation solutions can be up to 10%
 - Each container has its own full OS, making central management more difficult
 - Resource sharing tends to be more inflexible than in-kernel isolation solutions
 - Technologies tend to be architecture-specific

- Hypervisors con't
 - Implementations
 - z/VM the original IBM hypervisor, only runs on IBM mainframes (System 370 and up)
 - Xen implements paravirtualization on x86, full virtualization on x86 hardware with extensions and IA-64; overhead of 3-8%
 - Newer versions of VMware, future versions of Microsoft Virtual Server on x86
 - Sun's Logical Domains on UltraSPARC T1

- Full virtualization
 - Provides emulation of a full hardware system
 - Code runs on host CPU where possible (compare emulation)
 - Heaviest-weight, slowest option
 - Few advantages over hypervisor virtualization on supported hardware
 - Most difficult management
 - Lots of overhead 30-50% is typical

- Full virtualization
 - Implementations
 - Classic Vmware (x86)
 - MS Virtual Server (x86)
 - QEMU with the KQEMU module (x86)
 - VirtualBox (x86)