Advanced Unix System Administration

Lecture 20 April 12, 2007

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

- What is crypto?
 - Most prominently, set of algorithms, but these algorithms are bundled in a system!
- What can crypto do for you?
 - Confidentiality ensures that other people can't read your data
 - Authentication ensures that a message comes from its claimed source
 - Integrity ensures that data hasn't been modified or corrupted

- What does crypto NOT do for you?
 - Address unrelated weaknesses in your security model
 - Fix weaknesses in your implementation of a cryptosystem
 - Prevent user errors
 - Make users actually use your security system!
- Cryptography is NOT a magic bullet!
 - Crypto is well-studied; it's usually easier to find another way in

- Cryptographic primitives
 - Ciphers
 - Makes data unreadable except by holder(s) of a certain secret (the secret part is important!)
 - Symmetric ciphers share a secret for encryption and decryption, public-key ciphers only use a secret at decryption time
 - Public-key ciphers: RSA, ElGamal
 - Symmetric ciphers: DES, AES, RC4, ...
 - Block ciphers work on chunks of data, stream ciphers work on individual bytes
 - Block ciphers: DES, CAST family, Blowfish/Twofish, AES
 - Stream ciphers: RC4

- Cryptographic primitives con't
 - One-way hash functions
 - Take data and produce some short stream of bytes which somehow "identifies" that data
 - Important properties:
 - Small changes in the input should produce large changes in the output (avalanche effect)
 - Collisions should be difficult to generate
 - Should be difficult to calculate the original datastream from the hash
 - Not as well-studied as ciphers
 - Examples: MD5, RIPEMD-160, SHA family

- Applications of crypto
 - Encrypting data
 - Apply a cipher to the data
 - Doesn't provide for integrity!
 - Data verification
 - Compare the hash of the data with a known hash
 - Where does one get the hash from?
 - Digital signatures
 - Concept: encrypt something with your private key, so that people can identify it as coming from you

- Applications of crypto con't
 - Hybrid cryptosystem
 - Hash the data, sign the hash, encrypt the data
 - Provides confidentiality, authentication, and integrity verification
 - Communications security
 - In general, you want to verify who you're talking to before you talk to them, so verify their public key
 - Has to be some infrastructure to verify this key!
 - Public-key algorithms are slow, so select a symmetric key via the PK-secured channel and switch to the symmetric cipher

- Applications of crypto con't
 - Secure authentication
 - Lots of possible schemes:
 - Require the user to sign some data of your choosing
 - Use hash functions on a secret
 - Send a secret over an encrypted channel
 - Carelessly designed schemes can be quite insecure!
 - Just accepting the hash of a secret alone leaves you open to replay attacks
 - What happens if one of the endpoints is malicious?

- Attacks on crypto
 - Cipher attacks
 - Data recovery: ability to read a message faster than brute force
 - Key recovery: ability to find the key used from the encrypted messages alone
 - Hash function attacks
 - Collision: generate two reasonably-related things that hash to the same value
 - Reversing the hash: find possible inputs to the hash from the output alone

- Attacks on crypto con't
 - Brute force
 - When your secrets are too small, it's possible to reverse a computation in a "reasonable" amount of time
 - What values provide "enough" security?
 - Symmetric ciphers: 128 bits
 - Public-key ciphers: 2048 bits
 - Hash functions: 256 bits
 - Side-channel attacks
 - Lots of creative ways: measure power draw, time to run algorithm, etc.