
   

Advanced Unix System 
Administration

Lecture 15
March 21, 2007

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>



   

Types of Attacks

● Other memory bugs
– Use after free(): if the attacker can control 

what's in that memory afterwards, could lead 
to nasty security problems

– Double free()
– Format string vulnerability (C, C++ 

programs)
● User control of the format string allows nasty 

memory-based attacks

– With sufficient effort, many (most?) memory 
use bugs can be exploitable



   

Types of Attacks

● Temporary file vulnerabilities
– On most systems, anyone can write to /tmp
– Imagine the following sequence:

● Attacker creates symlink /tmp/foo -> file
● Program does open(“/tmp/foo”, O_WRONLY|

O_CREAT|O_TRUNC)

– Any time temp file names are predictable, 
there's a problem

● Even when the name does change, there is a race 
condition



   

Types of Attacks

● Some remarks on PHP webapps
– register_globals is dangerous!

● Convenient, but discourages input validation
● With register_globals on, an attacker can set 

arbitrary variables in your environment!
● Lots of little ways to exploit this, even if you're 

careful
● Sadly, many (most?) PHP apps depend on this, or 

(even worse) on register_globals emulation

– PHP allows remote file includes
● Combined with the above, makes some very 

dangerous exploits very easy



   

Types of Attacks

● Attacks that aren't so technically clever
– Brute force

● Particularly relevant for authentication systems
● You can mitigate the problem sometimes, but can't 

make it go away
● Always design the system with such attacks in 

mind!

– Social engineering
● Humans can be easier to exploit than computers
● User education is only part of the solution – limit 

what your users can do



   

The Unix Permissions Model

● Users and groups
– Users and groups have numeric IDs 

associated with them
– Groups can contain multiple users

● Process credentials
– Each process has a set of credentials 

associated with it
● Real user ID: set to the UID executing the process 

at the beginning of the execution
● Real group ID



   

The Unix Permissions Model

● Process credentials con't
● Effective user ID: the UID used for most 

permissions checks
● Effective group ID
● Saved set-user-ID: used for flexibility in setuid 

applications
● Saved set-group-ID

– Note that access control is always by 
user/group ID!

– Behavior can be very system-dependent – 
see the documentation, or try examples



   

The Unix Permissions Model

● File permissions
– Files have a user/group ID associated with 

them
– File permission bits: binary mask usually 

written as 4-digit octal
● High digit: 1 = sticky, 2 = setgid, 4 = setuid
● 2nd digit: 1 = user execute, 2 = user write, 4 = 

user read
● 3rd digit: 1 = group execute, 2 = group write, 4 = 

group read
● 4th digit: 1 = other execute, 2 = other write, 4 = 

other read



   

The Unix Permissions Model

● File permissions con't
– Directory permissions:

● High bit: 1 = deletion restricted, 2 = files created 
will have group set to directory's group

● Execute bits mean permission to cd in

– Access control is by the process's effective 
IDs

● On Linux, there is a set of filesystem IDs, almost 
always equal to the effective UID



   

The Unix Permissions Model

● POSIX draft ACLs
– Allow the addition of extra user and group 

permissions entries
– A “mask” is set on each file and is ANDed 

with each ACL entry to determine effective 
permissions



   

Impersonating Others

● SUID/SGID execution
– The changing ID dance

● The real user/group IDs are inherited from the 
parent process

● The effective user and/or group IDs are set to the 
owner/group of the binary, if the corresponding bit 
is set

● The saved set-user/group-IDs are set to the 
effective user and group IDs

– The “nosuid” or “nosetuid” attribute on the 
filesystem prevents changing IDs based on 
the suid/gid bits



   

Impersonating Others

● Changing IDs while running
– Unprivileged programs may change their 

effective IDs to their real IDs or their saved 
set-IDs

● SUSv3 does not specify whether real IDs may be 
changed

– Privileged programs may change any of their 
IDs to anything

● How to change a particular ID can be quite system-
dependent!

● Keeping track of which IDs are set to what is 
important for security



   

Impersonating Others

● Changing IDs while running con't
– Becoming someone else temporarily

● Change your effective ID to what you need (if 
unprivileged, can only be real ID or saved set-ID), 
using seteuid()/setegid()

● When done, can change ID back to saved set-ID

– Dropping privileges
● Must change real, effective, AND saved set-IDs to 

new values, so that process cannot regain 
privileges!

● setuid()/setgid() do this for privileged processes 
ONLY; unspecified whether setreuid()/setregid() do


