Advanced Unix System Administration

Lecture 11 March 7, 2007

Steven Luo <sluo+decal@OCF.Berkeley.EDU>

- User Datagram Protocol (UDP)
 - Extremely simple, but provides basically no features
 - Unreliable, message-oriented, stateless
 - Each message is packaged into a single datagram and sent over the network
 - No guarantees on delivery, order of arrival
 - UDP packet: source port (16 bits), destination port (16 bits), length (16 bits), checksum (16 bits), data

Ports

- In TCP and UDP, each socket is assigned a port number to identify the traffic to it
- Kernel examines destination port to decide which process to give data to; source port used to determine destination of replies
- By convention:
 - 1-1023 are "Well Known Ports" for services, 1024-49151 are "Registered Ports" for services,
 - 49152-65535 are dynamic ports used as source ports

- Transmission Control Protocol (TCP)
 - Much more elaborate and featureful than UDP
 - Reliable, stream-oriented, connectionoriented
 - Applications send streams of data which TCP packages into packets and sends over the network
 - Correct and in-order delivery is guaranteed even on unreliable networks

- The TCP packet
 - Source port (16 bits), destination port (16 bits)
 - Sequence number (32 bits)
 - Acknowledgment number (32 bits)
 - Data offset (4 bits), gives size of header in 32-bit words, reserved field (4 bits)
 - TCP flags (8 bits): CWR, ECE, URG, ACK, PSH, RST, SYN, FIN
 - Window size (16 bits), gives number of bytes sender is willing to receive before ACK

- The TCP packet con't
 - Checksum (16 bits)
 - Urgent pointer (16 bits)
 - Options, padded to an integral multiple of 32 bits
 - Data
- TCP connections
 - Three phases of connections: establishment, data transfer, teardown

- TCP connections con't
 - Establishment (3-way handshake):
 - Client sends packet with SYN set to server
 - Server replies with SYN/ACK
 - Client sends ACK
 - Unexpected/unwanted connections rejected with RST
 - Data transfer
 - The sequence number of the packets with SYN set give initial sequence numbers (ISNs)
 - Each byte of data in the stream is given a sequence number, starting with ISN+1

- TCP connections con't
 - Data transfer con't
 - Receipt of each packet is acknowledged with an ACK with ack number set to the last byte in sequence received + 1
 - Selective packet acknowledgment is available as an option
 - Packets not acknowledged will be retransmitted; duplicates will be dropped silently
 - Number of bytes a sender will send before waiting for ACK is controlled by the window size

- TCP connections con't
 - Data transfer con't
 - TCP implementations use data such as retransmissions, ACK rates, and the like to adjust to conditions (via changing the window, slowing transmission rate, etc.)
 - Teardown
 - FIN is sent to announce that one has no more data to send
 - That half of the connection is closed when the ACK reply is received

- Application considerations
 - For short communications that may happen frequently/quickly, UDP is used
 - Longer conversations, anything that needs to happen reliably, etc. should be done over TCP
 - Stream connections that can't take the overhead or connection handling of TCP may use UDP, but this requires careful application design
 - By volume, TCP traffic dominates on the Internet