
Advanced Unix System Administration

Spring 2007

Homework 3-4

This assignment is due via email to <sluo+decal@ocf.berkeley.edu> by 11:59 PM on
Friday, April 27 (note that you have two weeks to do this assignment). All the files
mentioned are in ~sluo/hw3-files on the login server (plague.ocf.berkeley.edu), and
in a tarball hw3-files.tar.gz available from the website. If you do not already have
access to the login server, you need to email me about setting up an account. This is a
long assignment; you don’t want to wait until the last minute to get started!

1. Networking on paper. Here’s an exercise to test your understanding of TCP/IP over
Ethernet.

a. Your company needs five different networks, four small networks of about 20
servers each, and a larger network of clients with addresses assigned by DHCP.
You have the IP address range 172.17.42.0/24 to work with (I know this is
RFC 1918 space – it’s an example). Suggest a way to divide up this netblock
into the networks you need.

b. A computer on an Ethernet network with MAC address FF:FF:FE:09:42:A3

and IP address 172.17.42.37 sends the message Hello, world!\r\n via UDP
from port 51500 to a computer with MAC address FF:FF:FB:3D:28:9C and IP
address 172.17.42.58 on port 9. Write out a transcript of the Ethernet frames
resulting from this conversation. Assume the sender’s ARP cache is empty at
the beginning of the conversation. Note: you do not need to write out each
packet byte-by-byte – a thorough description of the header and contents of
each frame will do.

c. A computer on an Ethernet network with MAC address FF:FF:FE:09:42:A3

and IP address 172.17.42.37 initiates a TCP connection from port 51501 to a
computer with MAC address FF:FF:FB:3D:28:9C and IP address 172.17.42.58
on port 7. The computer on .37 sends the string Hello, world!\r\n to the
peer, which echos back the same message; the two computers then close the
connection. Write out a transcript of the Ethernet frames resulting from this
conversation. Assume the initiating host’s ARP cache already contains the
entry for the machine it wishes to talk to. Note: you do not need to write out
each packet byte-by-byte – a thorough description of the header and contents
of each frame will do.

2. Recursive DNS lookups. Resolve the following DNS queries by hand using dig

+norecurse:

• mail.Math.Berkeley.EDU IN A

1



• www.google.com IN A

• bigsur.steven676.net IN MX.

By “by hand”, I mean you get to do the recursion yourself, starting from the root
DNS servers. The -t option allows you to specify a record type, and @ is used to
specify a target DNS server. Include each dig command you used and the output.
Hint: one of the options to dig allows you to check your work quite easily.

3. Idle scan. TCP initial sequence numbers aren’t the only numbers that are prob-
lematic if they are predictable. There’s an interesting technique called “idle scan”,
implemented in recent versions of nmap, that relies on a “zombie” host whose IPID
numbers are predictable.

a. How does this scan work? Why does the zombie host have to be idle? Where
do the predictable IPID numbers come in?

b. From where does the scan appear to be coming from, the scanning host or the
zombie? Why? Why might this be a problem if a zombie on your network is
being used to scan one of your machines? Optional: If you have access to a
suitable zombie host and a machine which you can do network configuration
on (not your scanning host!), verify this.

c. What can you do to prevent idle scans from being launched from inside your
network?

4. Secure temporary file creation. This is another one of those problems that turns out
to be annoyingly hard, and comes back to bite us again and again.

a. Have a look at tmpfile3.c, which attempts to create a temporary file securely.
Compile and run it, and watch its behavior (perhaps with strace). What’s
wrong with this approach? (Hint: this works fine on a single-tasking system.)
Optional: Construct an exploit for this. (Driving up the system load might
help make your exploit work more reliably. If you do this, please clean up when
you’re done!)

b. Look at tmpfile4.c. What’s changed from tmpfile3.c? Compile and run it,
and watch its behavior with strace. Why does this work (on POSIX-compliant
filesystems)? Is there something superfluous in what this program does?

c. You may have gotten a warning to the effect that mktemp() is dangerous,
and that mkstemp() or tmpfile() should be used instead. In naive applica-
tions, such as tmpfile3.c, mktemp() is indeed dangerous, though tmpfile4.c

demonstrates a correct use (though this could still be vulnerable if the im-
plementation of mktemp() is bad, as on many historic Unixes). Watch the
execution of tmpfile5, which is tmpfile4 modified to use mkstemp() (as
modern practice recommends), with strace. What (if anything) does it do
differently? Also watch the execution of the mktemp command, which (along

2



with tempfile) is the recommended way of creating temporary files from shell
scripts. Does it work any differently from tmpfile4 and tmpfile5?

d. On POSIX filesystems, the methods used by tmpfile4 and tmpfile5 are suf-
ficient to guarantee that nothing bad will happen when a temporary file is
opened. Why jump through hoops to obtain a unique, difficult-to-guess file-
name, in that case? Examine tmpfile6.c. For some applications, this is
acceptable (indeed, it is occasionally necessary to create files in world-writable
directories with predictable names, such as lock files); when might this be a
problem, and why?

e. Over NFS (which isn’t POSIX-compliant), the method of tmpfile6.c is in-
sufficient to guard against a symlink attack. (tmpfile4.c and similar are also
theoretically vulnerable, but as they choose difficult-to-guess temporary file
names, conducting such an attack is hard; this is another good reason to avoid
predictable temporary file names.) Look at tmpfile7.c, which creates a pre-
dictable file name in an NFS-safe manner. What’s changed? Why does this
work? Note: These issues mean that it’s probably a good idea to avoid having
/tmp and /var/tmp on NFS if at all possible; while applications creating lock
files are generally aware of these issues, other users of /tmp may not be quite
so clued in.

5. An exercise in setuid/setgid design – designing a secure local file sharing solution.
Suppose the users on your system want a way to copy files amongst themselves,
except that (1) you want to be able to place restrictions on what can be copied
between users and (2) your users want to be able to place restrictions on what can
be copied to their home directories. Specifically, assume that these restrictions are
implemented as shell scripts (or other executables) that are run on each file to be
copied.

a. Design a system using a single binary to securely perform this task (i.e. write
down, in detail, the steps that such a system would take while copying a file
from one user to another). Your security model may require the creation of
new system users, if appropriate.

b. Design a system to perform this task as securely as possible. You may use
as many binaries and/or running daemons as you think appropriate. Your
security model may require the creation of new system users, if appropriate.

c. Which design is more secure? Why?

6. Setting up a chroot() jail. This exercise must be done from the login server. While
not foolproof, a chroot() jail can help improve the security of a service by making
an attacker’s life more difficult. Here, you get to set up chrooting for some programs;
while they don’t do much useful, they could potentially be run out of inetd in their
given forms.

3



For this exercise, you have the use of a container, located at the IP 10.20.2.xx,
where xx is the last two digits of your UID on the login server plus 10; for example,
I have UID 1000, so my container would be 10.20.2.10. An account with your
username on the login server and the files you need has been created; both it and the
root account for the container have their passwords set to your password on the login
server. Logins are via SSH, as usual, with direct root logins disabled. The containers
don’t have very much at all installed (Debian packages of priority important and
higher, GCC, OpenSSH, strace, and ltrace), and have strict resource limits (32
MB maximum memory usage, 128 processes running); they won’t stay around for
long past this assignment’s due date.

a. Log in to your container and have a look at chroot1.c. Compile and run
(you’ll need to be root to run, as the use of chroot() is restricted to root),
and watch execution with strace. Why is the chdir() after the chroot()

necessary? Optional: For bonus points, why do we need to drop privileges?

b. chroot2.c omits the built-in chrooting of chroot1.c. Compile it, and set up
an environment in /chroot in which you can run it with the chroot command.
Hint: you’ll need to copy some files into /chroot; ldd and strace should help
you figure out which ones. In general, you want to keep a chroot as empty as
possible, to limit the possibilities an attacker has inside.

c. chroot3.c and chroot4.c are identical, except that chroot4.c has built-in
chrooting, while chroot3.c does not. Set up an environment in /chroot in
which chroot4 runs and produces identical output to chroot3 run in the main
filesystem namespace.

You’ve no doubt observed that, as a program gets more complex, it becomes more
difficult to chroot() jail, and you end up copying more of the host filesystem into
the chroot to make it work. As having more in the chroot reduces the security bene-
fit, there is a definite cost-benefit tradeoff to building a chroot() jail – simple apps
can usually benefit, whereas complex ones with lots of filesystem dependencies (es-
pecially if those dependencies include things like shells and/or language interpreters)
may not be worth chrooting. Daemons that know how to chroot() themselves (or
parts of themselves) can be better in this regard, as the authors can design the
chroot routine to work around most of these difficulties.

A chroot() jail only provides filesystem isolation. For stronger isolation of your
daemons, you’ll need to look into system-specific features. FreeBSD has the jail()
system call, providing process, network, and user isolation; see the jail(8) and
jail(2) man pages for details. Linux kernels with the Linux-VServer patch provide
security contexts, which in conjunction with chroot() and judicious use of the
capabilities system, provide even stronger guarantees; see the chcontext(8) man
page from the util-vserver distribution and other Linux-VServer documentation for
details. These technologies, as well as some others (OpenVZ for Linux, Solaris

4



containers) which can’t be set up to confine just one process (as far as I know),
can be used to create complete systems as well. This is in fact probably their most
common use – with the additional isolation, breaking out of the container becomes
much harder (should be impossible, really, without exploiting a kernel bug of some
sort), so there’s less benefit to making life more painful by building a extreme
minimalist environment.

7. Packet sniffing. Optional. Go capture some packets on your favorite network.
Analyze the traffic streams, and point out security weaknesses. Suggest ways to
improve the security of the traffic going over the network.

8. Forensic analysis. Optional. Try problems 1-7 of the Honeynet Project’s Forensic
Challenge <http://www.honeynet.org/challenge/>, except that I don’t expect
you to disassemble the malware to figure out what it does. This is an old challenge,
and the image represents a fairly out-of-date system, but the techniques still apply
in investigating break-ins today.

5


